Model Blacka Scholesa: Różnice pomiędzy wersjami

Z Encyklopedia Zarządzania
mNie podano opisu zmian
m (cleanup bibliografii i rotten links)
 
(Nie pokazano 12 wersji utworzonych przez 2 użytkowników)
Linia 1: Linia 1:
{{infobox4
"'''[[Model]] Blacka-Scholesa - ''' [[Model|model]] badający zmianę wartości [[Portfel|portfela]] ze względu na zmiany cen akcji i upływ czasu. Model ten daje matematyczne uzasadnienie wartości opcji kupna (W. Tarczyński, M. Zwolankowski 1999, s. 172)". Matematyczny [[Model|model]] zajmujący się badaniem [[Rynek|rynku]] z czasem ciągłym. [[Model|Model]] ten opiera się na aksjomatach procesu cen, które zostały zaproponowane w 1965 roku przez Paula Samuelsona (J. Jakubowski 2011, s. 76).
|list1=
<ul>
<li>[[Cena emisyjna]]</li>
<li>[[Teoria arbitrażu cenowego]]</li>
<li>[[Krótka sprzedaż]]</li>
<li>[[Analiza techniczna]]</li>
<li>[[Strategia Forex]]</li>
<li>[[Spekulacja]]</li>
<li>[[Premia za ryzyko]]</li>
<li>[[Kurs akcji]]</li>
<li>[[Day trading]]</li>
</ul>
}}
 
 
"'''[[Model]] Blacka-Scholesa -''' [[Model|model]] badający zmianę wartości [[Portfel|portfela]] ze względu na zmiany cen akcji i upływ czasu. Model ten daje matematyczne uzasadnienie wartości opcji kupna (W. Tarczyński, M. Zwolankowski 1999, s. 172)." Matematyczny [[Model|model]] zajmujący się badaniem [[Rynek|rynku]] z czasem ciągłym. [[Model|Model]] ten opiera się na aksjomatach procesu cen, które zostały zaproponowane w 1965 roku przez Paula Samuelsona (J. Jakubowski 2011, s. 76).  


==TL;DR==
==TL;DR==
Linia 26: Linia 10:
:# Procentowe wahanie cen akcji nie jest zależne od ceny obecnej jak i od cen w przeszłości, czyli <math>\forall_{t, h} \geqslant0</math> <math>\dfrac{S_{t+h}}{S_t}</math> jest niezależna od <math>\sigma (S_u: u \leqslant t)</math>
:# Procentowe wahanie cen akcji nie jest zależne od ceny obecnej jak i od cen w przeszłości, czyli <math>\forall_{t, h} \geqslant0</math> <math>\dfrac{S_{t+h}}{S_t}</math> jest niezależna od <math>\sigma (S_u: u \leqslant t)</math>
:# [[Zmiana]] ta (a precyzyjniej rozkład zmiany) jest zależna tylko od długości okresu czasu, na którym jest rozpatrywana, jednak nie jest istotne, od której chwili ją liczymy, tj. <math>\forall_{t, h} \geqslant0</math>, <math>\dfrac{S_{t+h}}{S_t} \backsim \dfrac{S_h}{S_0}</math>
:# [[Zmiana]] ta (a precyzyjniej rozkład zmiany) jest zależna tylko od długości okresu czasu, na którym jest rozpatrywana, jednak nie jest istotne, od której chwili ją liczymy, tj. <math>\forall_{t, h} \geqslant0</math>, <math>\dfrac{S_{t+h}}{S_t} \backsim \dfrac{S_h}{S_0}</math>
:#Proces <math>S_t</math> ma nieprzerwane (ciągłe) trajektorie (J. Jakubowski 2011, s. 76).  
:#Proces <math>S_t</math> ma nieprzerwane (ciągłe) trajektorie (J. Jakubowski 2011, s. 76).
<google>t</google>


==Przyjęte założenia do modelu==
==Przyjęte założenia do modelu==
Linia 38: Linia 21:
:# Uczestnicy [[Rynek|rynku]] mają [[prawo]] pożyczać i inwestować środki zgodnie z tą samą wolną od ryzyka [[Stopa procentowa|stopą procentową]],
:# Uczestnicy [[Rynek|rynku]] mają [[prawo]] pożyczać i inwestować środki zgodnie z tą samą wolną od ryzyka [[Stopa procentowa|stopą procentową]],
:# Krótkoterminowa [[Stopa procentowa|stopa procentowa]], wolna od ryzyka jest stała (W. Tarczyński, M. Zwolankowski 1999, s. 171),
:# Krótkoterminowa [[Stopa procentowa|stopa procentowa]], wolna od ryzyka jest stała (W. Tarczyński, M. Zwolankowski 1999, s. 171),
:# [[Rynek]] funkcjonuje w sposób ciągły,  
:# [[Rynek]] funkcjonuje w sposób ciągły,
:# Za zajmowanie krótkiej pozycji nie ma kary,
:# Za zajmowanie krótkiej pozycji nie ma kary,
:# [[Cena]] sprzedaży akcji jest identyczna jak cena kupna (dla wszystkich instrumentów) (A. Weron, R. Weron 2009, s. 183).
:# [[Cena]] sprzedaży akcji jest identyczna jak cena kupna (dla wszystkich instrumentów) (A. Weron, R. Weron 2009, s. 183).
<google>n</google>


==Klasyczny model Blacka-Scholesa==
==Klasyczny model Blacka-Scholesa==
Zakładamy, że (<math>\Omega</math>, <math>\mathcal{F}</math>, ''P'') jest przestrzenią probabilistyczną z filtracją <math>\mathbb{F}=(\mathcal{F}_t)_{t \in[0, T]}</math>. Mamy na niej zadany proces Wienera.
Zakładamy, że (<math>\Omega</math>, <math>\mathcal{F}</math>, ''P'') jest przestrzenią probabilistyczną z filtracją <math>\mathbb{F}=(\mathcal{F}_t)_{t \in[0, T]}</math>. Mamy na niej zadany proces Wienera.


Naszym założeniem jest sytuacja w której mamy do czynienia z rynkiem idealnym. Posiadamy na nim jeden papier ryzykowny - akcje, które nie płacą dywidend, o cenie podanej wzorem ''<math>dS_t=\mu S_tdt+ \sigma S_tdW_t, \qquad \sigma >0, \mu \in \mathbb{R}</math>''.  
Naszym założeniem jest sytuacja w której mamy do czynienia z rynkiem idealnym. Posiadamy na nim jeden papier ryzykowny - akcje, które nie płacą dywidend, o cenie podanej wzorem ''<math>dS_t=\mu S_tdt+ \sigma S_tdW_t, \qquad \sigma >0, \mu \in \mathbb{R}</math>''.


Posiadamy również na tym rynku [[rachunek]] bankowy o niezmiennej stopie procentowej <math>r \geqslant 0</math> w pełnym okresie handlu [0, ''T''] i nieustannej kapitalizacji, tj. przebieg wartości jednostki pieniężnej jest podany równaniem ''<math>dB_t = rB_tdt, \qquad B_0 = 1</math>''  
Posiadamy również na tym rynku [[rachunek]] bankowy o niezmiennej stopie procentowej <math>r \geqslant 0</math> w pełnym okresie handlu [0, ''T''] i nieustannej kapitalizacji, tj. przebieg wartości jednostki pieniężnej jest podany równaniem ''<math>dB_t = rB_tdt, \qquad B_0 = 1</math>''


zatem ''<math>B_t = e^{rt}</math>''
zatem ''<math>B_t = e^{rt}</math>''
Linia 53: Linia 38:
Zakładając, że rynek jest idealny wiemy, że wszyscy mają identyczną wiedzę, a [[informacje]] w naszym modelu są inkasowane wyłącznie dzięki przyglądaniu się procesowi cen ''S'' to o &sigma;-ciele ''<math>\mathcal{F}_t</math>'' analizowanym jako [[wiedza]] zdobyta do chwili ''t'' zakładamy, że '<math>\mathcal{F}_t= \mathcal{F}_t^S</math>''.
Zakładając, że rynek jest idealny wiemy, że wszyscy mają identyczną wiedzę, a [[informacje]] w naszym modelu są inkasowane wyłącznie dzięki przyglądaniu się procesowi cen ''S'' to o &sigma;-ciele ''<math>\mathcal{F}_t</math>'' analizowanym jako [[wiedza]] zdobyta do chwili ''t'' zakładamy, że '<math>\mathcal{F}_t= \mathcal{F}_t^S</math>''.


Ponieważ jedynym wynikiem wzoru ''<math>dS_t=\mu S_tdt+ \sigma S_tdW_t</math>''  
Ponieważ jedynym wynikiem wzoru ''<math>dS_t=\mu S_tdt+ \sigma S_tdW_t</math>''


jest ''<math>S_t=S_0 exp (\sigma W_t+(\mu -\frac{1}{2} \sigma^2)t)</math>'' więc ''<math>\mathcal{F}_t^W = \mathcal{F}_t^S</math>''.
jest ''<math>S_t=S_0 exp (\sigma W_t+(\mu -\frac{1}{2} \sigma^2)t)</math>'' więc ''<math>\mathcal{F}_t^W = \mathcal{F}_t^S</math>''.
Linia 62: Linia 47:


==Model Blacka-Scholesa a model dwumianowy==
==Model Blacka-Scholesa a model dwumianowy==
Logika tego [[Model|modelu]] jest zbliżona do modelu dwumianowego. "Punktem wyjścia jest również [[Portfel|portfel]] pozbawiony [[Ryzyko|ryzyka]], który składa się z [[Opcja|opcji]] i akcji bazowej dla tej opcji. Jeżeli przyjmuje się [[założenie]], że [[Arbitraż|arbitraż]] jest niemożliwy, to [[Stopa zwrotu|stopa zwrotu]] z takiego portfela jest równa [[Stopa procentowa|stopie procentowej]] wolnej od ryzyka. Najważniejszą różnicą między modelem dwumianowym i modelem Blacka-Scholesa jest fakt, że w modelu Blacka-Scholesa zmiany cen instrumentu podstawowego są ciągłe, natomiast w modelu dwumianowym zmiany cen akcji zachodzą w sposób skokowy (W. Tarczyński, M. Zwolankowski 1999, s. 171)."
Logika tego [[Model|modelu]] jest zbliżona do modelu dwumianowego. "Punktem wyjścia jest również [[Portfel|portfel]] pozbawiony [[Ryzyko|ryzyka]], który składa się z [[Opcja|opcji]] i akcji bazowej dla tej opcji. Jeżeli przyjmuje się [[założenie]], że [[Arbitraż|arbitraż]] jest niemożliwy, to [[Stopa zwrotu|stopa zwrotu]] z takiego portfela jest równa [[Stopa procentowa|stopie procentowej]] wolnej od ryzyka. Najważniejszą różnicą między modelem dwumianowym i modelem Blacka-Scholesa jest fakt, że w modelu Blacka-Scholesa zmiany cen instrumentu podstawowego są ciągłe, natomiast w modelu dwumianowym zmiany cen akcji zachodzą w sposób skokowy (W. Tarczyński, M. Zwolankowski 1999, s. 171)".


[[Wartość]] opcji ustalona w oparciu o model dwumianowy będzie się przybliżać do wartości opcji określonej za pomocą modelu Blacka-Scholesa wraz z powiększaniem liczby okresów w modelu drzew dwumianowych (W. Tarczyński, M. Zwolankowski 1999, s. 174).
[[Wartość]] opcji ustalona w oparciu o model dwumianowy będzie się przybliżać do wartości opcji określonej za pomocą modelu Blacka-Scholesa wraz z powiększaniem liczby okresów w modelu drzew dwumianowych (W. Tarczyński, M. Zwolankowski 1999, s. 174).
Linia 94: Linia 79:
:'''ROZWIĄZANIE'''
:'''ROZWIĄZANIE'''


<math>d_1= \dfrac{ln \left( \frac{25}{30} \right) + (0,12+ \tfrac{0,2^2}{2}) \cdot0,5}{0,2 \cdot \sqrt{0,5}} \asymp \dfrac{-0,1123}{0,1414} \asymp -0,7942</math>
<math>d_1= \dfrac{ln \left( \frac{25}{30} \right) + (0,12+ \tfrac{0,2^2}{2}) \cdot0,5}{0,2 \cdot \sqrt{0,5}} \asymp \dfrac{-0,1123}{0,1414} \asymp - 0,7942</math>


<math>d_2=-0,7942-0,2 \cdot \sqrt{0,5} \asymp -0,9356</math>
<math>d_2=-0,7942-0,2 \cdot \sqrt{0,5} \asymp - 0,9356</math>


<math>N (d_1) \asymp 0,22</math>
<math>N (d_1) \asymp 0,22</math>
Linia 102: Linia 87:
<math>N (d_2) \asymp 0,18</math>
<math>N (d_2) \asymp 0,18</math>


<math>C = 25 \cdot 0,22 - 30 \cdot e^{-0,12 \cdot 0,5} \cdot 0,18 \asymp 0,41</math>
<math>C = 25 \cdot 0,22-30 \cdot e^{-0,12 \cdot 0,5} \cdot 0,18 \asymp 0,41</math>


:'''INTERPRETACJA'''
:'''INTERPRETACJA'''
Linia 110: Linia 95:
Gdyby rozpatrywana [[opcja]] była opcją sprzedaży, wówczas na podstawie wzoru <math>P=X\cdot e^{-r\cdot T}\cdot N (-d_2)-S\cdot N (-d_1)</math> jej wartość jest równa 3,66 zł.
Gdyby rozpatrywana [[opcja]] była opcją sprzedaży, wówczas na podstawie wzoru <math>P=X\cdot e^{-r\cdot T}\cdot N (-d_2)-S\cdot N (-d_1)</math> jej wartość jest równa 3,66 zł.


<math>P = 30 \cdot e^{-0,12 \cdot 0,5} \cdot N (0,9356) - 25 \cdot N (0,7942) \asymp 23,16 - 19,5 = 3,66</math> (W. Tarczyński, M. Zwolankowski 1999, s. 173-174)."
<math>P = 30 \cdot e^{-0,12 \cdot 0,5} \cdot N (0,9356) - 25 \cdot N (0,7942) \asymp 23,16-19,5 = 3,66</math> (W. Tarczyński, M. Zwolankowski 1999, s. 173-174)".
 
{{infobox5|list1={{i5link|a=[[Cena emisyjna]]}} &mdash; {{i5link|a=[[Teoria arbitrażu cenowego]]}} &mdash; {{i5link|a=[[Krótka sprzedaż]]}} &mdash; {{i5link|a=[[Analiza techniczna]]}} &mdash; {{i5link|a=[[Strategia Forex]]}} &mdash; {{i5link|a=[[Spekulacja]]}} &mdash; {{i5link|a=[[Premia za ryzyko]]}} &mdash; {{i5link|a=[[Kurs akcji]]}} &mdash; {{i5link|a=[[Day trading]]}} }}


==Bibliografia==
==Bibliografia==
* Weron A., Weron R. (2009), ''[[Inżynieria finansowa]]: [[Wycena]] instrumentów pochodnych, Symulacje komputerowe, [[Statystyka]] rynku'', Wydawnictwo Naukowo-Techniczne, Warszawa
<noautolinks>
* Tarczyński W., Zwolankowski M. (1999) ''Inżynieria finansowa: Instrumentarium, Strategie, [[Zarządzanie]] ryzykiem'', Agencja Wydawnicza PLACET, Warszawa
* Black F., Scholes M. (1973), ''The pricing of options and corporate liabilities'', Journal of political economy 81.3
* Jakubowski J. (2011), [http://mst.mimuw.edu.pl/wyklady/ip1/wyklad.pdf ''Modele matematyczne rynków instrumentów pochodnych I.''], Uniwersytet Warszawski (2011): 76-114
* Jajuga K. (2013), ''[https://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.desklight-8f853e7c-5fd9-4eeb-9a11-c08630a5496a Ryzyko modelu a miary ryzyka]'', Studia Ekonomiczne 152 (2013): 73-81
* Black F., Scholes M. (1973), [https://www.journals.uchicago.edu/doi/pdfplus/10.1086/260062 ''The pricing of options and corporate liabilities.''], Journal of political economy 81.3 (1973): 637-654.
* Jakubowski J. (2011), ''[https://mst.mimuw.edu.pl/wyklady/ip1/wyklad.pdf Modele matematyczne rynków instrumentów pochodnych]'', Uniwersytet Warszawski
* Piontek K. (2000), [http://kpiontek.ae.wroc.pl/week.pdf ''Efekt dni tygodnia i jego wpływ na wycenę opcji.''], Finanse, Banki i Ubezpieczenia w Polsce u progu XXI wieku, [[Materiały]] konferencyjne, Poznań (2000).
* Piontek K. (2000), ''Efekt dni tygodnia i jego wpływ na wycenę opcji'', Finanse, Banki i Ubezpieczenia w Polsce u progu XXI wieku, Materiały konferencyjne, Poznań
* Jajuga K. (2013), [http://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.desklight-8f853e7c-5fd9-4eeb-9a11-c08630a5496a ''Ryzyko modelu a miary ryzyka.''], Studia Ekonomiczne 152 (2013): 73-81.
* Tarczyński W., Zwolankowski M. (1999), ''Inżynieria finansowa: Instrumentarium, Strategie, Zarządzanie ryzykiem'', Placet, Warszawa
* Weron A., Weron R. (2009), ''Inżynieria finansowa: Wycena instrumentów pochodnych, Symulacje komputerowe, Statystyka rynku'', Wydawnictwo Naukowo-Techniczne, Warszawa
</noautolinks>


{{a|Aleksandra Galica}}
{{a|Aleksandra Galica}}
 
[[Kategoria:Analiza inwestycyjna]]
[[Kategoria: Metody i techniki]]


{{#metamaster:description|Model Blacka-Scholesa to matematyczny model analizujący zmianę wartości portfela z powodu zmian cen akcji i upływu czasu. Oferuje matematyczne uzasadnienie dla wartości opcji kupna.}}
{{#metamaster:description|Model Blacka-Scholesa to matematyczny model analizujący zmianę wartości portfela z powodu zmian cen akcji i upływu czasu. Oferuje matematyczne uzasadnienie dla wartości opcji kupna.}}

Aktualna wersja na dzień 19:27, 7 sty 2024

"Model Blacka-Scholesa - model badający zmianę wartości portfela ze względu na zmiany cen akcji i upływ czasu. Model ten daje matematyczne uzasadnienie wartości opcji kupna (W. Tarczyński, M. Zwolankowski 1999, s. 172)". Matematyczny model zajmujący się badaniem rynku z czasem ciągłym. Model ten opiera się na aksjomatach procesu cen, które zostały zaproponowane w 1965 roku przez Paula Samuelsona (J. Jakubowski 2011, s. 76).

TL;DR

Artykuł przedstawia model Blacka-Scholesa, który służy do badania zmiany wartości portfela ze względu na zmiany cen akcji i upływ czasu. Model ten opiera się na postulatach Samuela i przyjmuje założenia dotyczące rynku idealnego. Przedstawione są również wzory Blacka-Scholesa do wyceny opcji. Artykuł porównuje również model Blacka-Scholesa z modelem dwumianowym i podaje przykład wyceny opcji.

Postulaty Samuelsona

P. Samuelson na nowo odkrył pracę L. Bacheliera z 1900 roku i na jej podstawie zaproponował postulaty, które proces cen powinien spełniać:

  1. Ceny są plusowe, czyli , , a jest stałą
  2. Procentowe wahanie cen akcji nie jest zależne od ceny obecnej jak i od cen w przeszłości, czyli jest niezależna od
  3. Zmiana ta (a precyzyjniej rozkład zmiany) jest zależna tylko od długości okresu czasu, na którym jest rozpatrywana, jednak nie jest istotne, od której chwili ją liczymy, tj. ,
  4. Proces ma nieprzerwane (ciągłe) trajektorie (J. Jakubowski 2011, s. 76).

Przyjęte założenia do modelu

Prawidłowość wskazań modelu jest zależna od tez, które powinien spełniać. F.Black i M. Scholes tworząc model wyceny opcji kierowali się następującymi założeniami:

  1. Ceny akcji reagują zgodnie z rozkładem logarytmiczno-normalnym, a parametry tego rozkładu są stałe,
  2. Całość kosztów transakcji jak i podatki są równe zero a akcje, które są przedmiotem opcji muszą być doskonale podzielone,
  3. W cyklu ważności opcji, nie przynoszą dywidend akcje bazowe dla danej opcji,
  4. Nie ma takiej możliwości, aby wystąpił pozbawiony ryzyka arbitraż,
  5. Występuje ciągły obrót papierami wartościowymi,
  6. Uczestnicy rynku mają prawo pożyczać i inwestować środki zgodnie z tą samą wolną od ryzyka stopą procentową,
  7. Krótkoterminowa stopa procentowa, wolna od ryzyka jest stała (W. Tarczyński, M. Zwolankowski 1999, s. 171),
  8. Rynek funkcjonuje w sposób ciągły,
  9. Za zajmowanie krótkiej pozycji nie ma kary,
  10. Cena sprzedaży akcji jest identyczna jak cena kupna (dla wszystkich instrumentów) (A. Weron, R. Weron 2009, s. 183).

Klasyczny model Blacka-Scholesa

Zakładamy, że (, , P) jest przestrzenią probabilistyczną z filtracją . Mamy na niej zadany proces Wienera.

Naszym założeniem jest sytuacja w której mamy do czynienia z rynkiem idealnym. Posiadamy na nim jeden papier ryzykowny - akcje, które nie płacą dywidend, o cenie podanej wzorem .

Posiadamy również na tym rynku rachunek bankowy o niezmiennej stopie procentowej w pełnym okresie handlu [0, T] i nieustannej kapitalizacji, tj. przebieg wartości jednostki pieniężnej jest podany równaniem

zatem

Zakładając, że rynek jest idealny wiemy, że wszyscy mają identyczną wiedzę, a informacje w naszym modelu są inkasowane wyłącznie dzięki przyglądaniu się procesowi cen S to o σ-ciele analizowanym jako wiedza zdobyta do chwili t zakładamy, że '.

Ponieważ jedynym wynikiem wzoru

jest więc .

Reasumując zakładamy, że filtracja jest dopełnioną filtracją procesu Wienera, tj. i .

Ukazany model jest dość dużym uproszczeniem rzeczywistości. Jego zaletą są łatwe założenia zrozumiałe dla większości. Z tego właśnie powodu służy on jako początkowe przybliżenie (J. Jakubowski 2011, s. 77-78).

Model Blacka-Scholesa a model dwumianowy

Logika tego modelu jest zbliżona do modelu dwumianowego. "Punktem wyjścia jest również portfel pozbawiony ryzyka, który składa się z opcji i akcji bazowej dla tej opcji. Jeżeli przyjmuje się założenie, że arbitraż jest niemożliwy, to stopa zwrotu z takiego portfela jest równa stopie procentowej wolnej od ryzyka. Najważniejszą różnicą między modelem dwumianowym i modelem Blacka-Scholesa jest fakt, że w modelu Blacka-Scholesa zmiany cen instrumentu podstawowego są ciągłe, natomiast w modelu dwumianowym zmiany cen akcji zachodzą w sposób skokowy (W. Tarczyński, M. Zwolankowski 1999, s. 171)".

Wartość opcji ustalona w oparciu o model dwumianowy będzie się przybliżać do wartości opcji określonej za pomocą modelu Blacka-Scholesa wraz z powiększaniem liczby okresów w modelu drzew dwumianowych (W. Tarczyński, M. Zwolankowski 1999, s. 174).

Wzory Blacka-Scholesa

Wprowadzenie równań modelu Blacka-Scholesa polega na złożonych przekształceniach matematycznych opartych na tezie, że wahania kursu akcji określane są procesem stochastycznym - "geometryczny proces Wienera". Wzory Blacka-Scholesa przy wymienionych wcześniej założeniach wyglądają następująco

gdzie:

C - wartość europejskiej opcji kupna,
P - wartość europejskiej opcji sprzedaży,
S - bieżąca cena akcji,
X - cena wykonania opcji,
r - stopa procentowa wolna od ryzyka,
T - czas do terminu wygaśnięcia opcji wyrażona w latach,
δ - odchylenie standardowe stopy zwrotu akcji,
N (d) - wartość dystrybuanty standaryzowanego rozkładu normalnego dla argumentu d (W. Tarczyński, M. Zwolankowski 1999, s. 172).

Przykład

POLECENIE

"Rozpatrzmy przykład europejskiej opcji kupna akcji o następujących parametrach: długość terminu do wygaśnięcia 6 miesięcy (T=0,5), cena wykonania 30 zł (X=30), aktualna cena 25 zł (S=25), stopa wolna od ryzyka 12% (r=12), odchylenie standardowe stopy zwrotu akcji 20% (), w czasie ważności opcji nie będzie wypłacana dywidenda.

ROZWIĄZANIE

INTERPRETACJA

Z przeprowadzonych obliczeń wynika, że wartość opcji jest równa 0,41 zł. Można wykazać, że wartość jest równa współczynnikowi delta, co jest dodatkową zaletą korzystania z modelu Blacka-Scholesa.

Gdyby rozpatrywana opcja była opcją sprzedaży, wówczas na podstawie wzoru jej wartość jest równa 3,66 zł.

(W. Tarczyński, M. Zwolankowski 1999, s. 173-174)".


Model Blacka Scholesaartykuły polecane
Cena emisyjnaTeoria arbitrażu cenowegoKrótka sprzedażAnaliza technicznaStrategia ForexSpekulacjaPremia za ryzykoKurs akcjiDay trading

Bibliografia

  • Black F., Scholes M. (1973), The pricing of options and corporate liabilities, Journal of political economy 81.3
  • Jajuga K. (2013), Ryzyko modelu a miary ryzyka, Studia Ekonomiczne 152 (2013): 73-81
  • Jakubowski J. (2011), Modele matematyczne rynków instrumentów pochodnych, Uniwersytet Warszawski
  • Piontek K. (2000), Efekt dni tygodnia i jego wpływ na wycenę opcji, Finanse, Banki i Ubezpieczenia w Polsce u progu XXI wieku, Materiały konferencyjne, Poznań
  • Tarczyński W., Zwolankowski M. (1999), Inżynieria finansowa: Instrumentarium, Strategie, Zarządzanie ryzykiem, Placet, Warszawa
  • Weron A., Weron R. (2009), Inżynieria finansowa: Wycena instrumentów pochodnych, Symulacje komputerowe, Statystyka rynku, Wydawnictwo Naukowo-Techniczne, Warszawa


Autor: Aleksandra Galica