Stopa zwrotu

Stopa zwrotu
Polecane artykuły


Stopa zwrotu - „wyrażony w procentach zwrot osiągnięty z inwestycji w danym roku w relacji do jej kosztu.”[1] Podstawowym celem obliczania stopy zwrotu jest ocena rentowności inwestycji. Inwestorowi zależy, by była ona możliwie najwyższa. Oczekiwana stopa zwrotu jest jedynie szacunkiem i nierzadko różni się od faktycznej, zrealizowanej, przez co łączona jest z ryzykiem inwestycyjnym.[2]

Stopy zwrotu, zwane także stopami zmian, zalicza się do mierników efektywności inwestycji finansowych, oblicza się je na podstawie szeregów cen i kursów. Występuje kilka podstawowych metod, których celem jest obliczanie stóp zwrotu:[3]

  • proste (dyskretne)
  • logarytmiczne (ciągłe)

Natomiast ze względu na wzajemne relacje występujące między nimi, stopy dzielą się na:

  • nominalne stopy zwrotu
  • realne stopy zwrotu
  • efektywne stopy zwrotu

Prosta stopa zwrotu

Prosta stopa zwrotu, określana jako SRR (z ang. Simple rate of return) - jest to stosunek „korzyści netto uzyskanych dzięki inwestycji w danym okresie czasu, najczęściej roku, do zaangażowanego w nią kapitału (nakładu inwestycyjnego).”[4]. W najogólniejszym ujęciu wzór składa się z ilorazu powyżej wymienionych czynników\[R=\frac{KN}{I} \cdot 100\%\]

Gdzie: R - stopa zwrotu; KN - korzyść(zysk) netto; I - kapitał(nakład) inwestycyjny[5]

Algorytm pozwala na uzyskanie dwóch postaci wyniku, z czego jedna bierze pod uwagę zarówno kapitał własny, jak i obcy, których połączenie nazywamy całkowitym nakładem inwestycyjnym (ROI), natomiast druga wyłącznie kapitał własny (ROE).

ROI

ROI (z ang. return of investment), to „prosta stopa zwrotu nakładów inwestycyjnych[6] Wzor jest oparty na podstawowym algorytmie i zapisywany jest następująco\[ ROI = \frac{\text{zysk operacyjny opodatkowany}}{\text{całkowite nakłady inwestycyjne}} \cdot 100\%, \]

Zysk operacyjny jest przeznaczony na rozdzielenie korzyści pomiędzy osoby mające wkład w kapitał, po wcześniejszym opodatkowaniu przez państwo.

ROE

ROE (z ang. Return of equity) - prosta stopa zwrotu z kapitału własnego - stosuje się ją w przypadku, gdy obliczana stopa zwrotu ma znaczenie jedynie dla właściciela, ponieważ w nakładach inwestycyjnych zawarta jest tylko ta część, którą stanowi kapitał własny.

\[ROE = \frac{\text{zysk netto}}{\text{nakłady inwestycyjne finansowane kapitałem własnym}} \cdot 100\%,\]

Charakterystyka metod

Obie metody wylicza się w odniesieniu do każdego z wyznaczonych okresów z osobna. Jak było wskazane wyżej, okres ten najczęściej przyjmuje czas jednego roku, a więc wylicza się tyle wartości ROE/ROI, ile lat trwa cykl inwestycyjny.[7]

Obiema metoda obliczamy bezwzględną opłacalność inwestycji, jednak ROI uwzględnia wszystkich mających wkład w kapitał, z kolei ROE określa opłacalność jedynie dla kapitału własnego - właściciela, który dzięki zastosowaniu metody może dowiedzieć się, jak efektywne były finansowane przez niego inwestycje.[8]

Wady i zalety

Wady i zalety metody prostych stóp zwrotu: Do niewątpliwych zalet tychże metod należy zaliczyć prostotę jej liczenia. Przedsiębiorstwa zazwyczaj dysponują informacjami, które zawarte są we wzorze. Posiada także szereg wad: wyznaczając opłacalność inwestycji opiera się na zysku, nie można więc uniwersalnie określić, czy dana inwestycja była dla podmiotu korzystna - zysk większy od zera, ale bardzo niski, będzie traktowany jako zysk niezadowalający. W tym miejscu można dostrzec drugą wadę metod prostych stóp zwrotu - graniczna stopa zwrotu uznawana za minimum ustalana jest subiektywnie. Metody te nie uwzględniają również zmian wartości pieniądze w czasie[9]


Księgowa stopa zwrotu

Metoda księgowej stopy zwrotu (ARR - z ang. Accounting rate of return) Księgowa stopa zwrotu, podobnie jak ROE i ROI, ocenia opłacalność inwestycji poprzez zestawienie korzyści netto powstałych w jej wyniku oraz nakładu potrzebnego na realizację. Tym co różni ARR od dwóch poprzednio opisanych metod, jest wykorzystanie uśrednionych wartości dla obu składników wzoru - nie oblicza się ich osobno dla każdego okresu. Dlatego też księgową stopę zwrotu określa się jako średni księgowy zwrot (AAR - z ang. Averange accounting return) - wynikiem obliczeń będzie więc średni zwrot uzyskany z inwestycji.[10]

Wady i zalety obu metod są bardzo zbliżone, z tym, że metoda księgowej stopy zwrotu nie jest metodą okresową, a syntetyczną.[11]


Logarytmiczna stopa zwrotu

Drugim sposobem jest obliczenie logarytmicznej stopy zwrotu. Wzór jest ilorazem dwóch wartości - kapitału obecnego oraz początkowego. Wynik następnie logarytmuje się (przez logarytm o podstawie liczby Eulera)

Przypisy

  1. [1] Mayo H.B. (2014) Inwestycje, Wydawnictwo Naukowe PWN, Warszawa, str 7.
  2. [2] Mayo H.B. (2014) Inwestycje, Wydawnictwo Naukowe PWN, Warszawa, str 7
  3. [3] Thlon M., Sieradzki R. (2016) Ocena opłacalności i ryzyka inwestycji, Wydawnictwo Uniwersytetu Ekonomicznego w Krakowie, Kraków 2016, str 24
  4. [4] Rogowski W. (2013) Rachunek efektywności i inwestycji. Wyzwania teorii i potrzeby praktyki, Wolters Kluwer Polska, Warszawa, s.237
  5. [5] Rogowski W. (2013) Rachunek efektywności i inwestycji. Wyzwania teorii i potrzeby praktyki, Wolters Kluwer Polska, Warszawa, s.237
  6. [6] Rogowski W. (2013) Rachunek efektywności i inwestycji. Wyzwania teorii i potrzeby praktyki, Wolters Kluwer Polska, Warszawa, s.238
  7. [7] Rogowski W. (2013) Rachunek efektywności i inwestycji. Wyzwania teorii i potrzeby praktyki, Wolters Kluwer Polska, Warszawa, s.238
  8. [8] Rogowski W. (2013) Rachunek efektywności i inwestycji. Wyzwania teorii i potrzeby praktyki, Wolters Kluwer Polska, Warszawa, s.239
  9. [9] Rogowski W. (2013) Rachunek efektywności i inwestycji. Wyzwania teorii i potrzeby praktyki, Wolters Kluwer Polska, Warszawa, s.241
  10. [10] Rogowski W. (2013) Rachunek efektywności i inwestycji. Wyzwania teorii i potrzeby praktyki, Wolters Kluwer Polska, Warszawa, s.252
  11. [11] Rogowski W. (2013) Rachunek efektywności i inwestycji. Wyzwania teorii i potrzeby praktyki, Wolters Kluwer Polska, Warszawa, s.256

Bibliografia

  • Gajdka J, Pietraszewski P. (2015) Wzrost zysków spółki a stopy zwrotu z akcji „Zeszyty Naukowe Uniwersytetu Szczecińskiego. Finanse, Rynki Finansowe, Ubezpieczenia” nr 855/nr 74, T.2
  • Mayo H.B. (2014) Inwestycje, Wydawnictwo Naukowe PWN, Warszawa
  • Michalski M.Ł. (2009) Analiza metod oceny efektywności inwestycji rzeczowych „Ekonomia Menedżerska” nr 6
  • Mikrut A., Poznańska A., (2009) Wybrane metody oceny efektywności przedsięwzięć inwestycyjnych „Zeszyty Naukowe Małopolskiej Wyższej Szkoły Ekonomicznej w Tarnowie” Z. 1(12/2009)
  • Piasecki K., Tomasik E. (2013) Rozkłady stóp zwrotu, Wydawnictwo Edu-Libru, Warszawa-Kraków
  • Rogowski W. (2013) Rachunek efektywności i inwestycji. Wyzwania teorii i potrzeby praktyki, Wolters Kluwer Polska, Warszawa
  • Thlon M., Sieradzki R. (2016) Ocena opłacalności i ryzyka inwestycji, Wydawnictwo Uniwersytetu Ekonomicznego w Krakowie, Kraków 2016
  • Wrzosek S. (red.) (2008) Ocena efektywności inwestycji, Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu, Wrocław

Autor: Sebastian Chodyna, Karol Cabaj, Łukasz Buczak