Model Blacka Scholesa: Różnice pomiędzy wersjami
m (Dodanie MetaData Description) |
mNie podano opisu zmian |
||
Linia 23: | Linia 23: | ||
P. Samuelson na nowo odkrył pracę L. Bacheliera z 1900 roku i na jej podstawie zaproponował postulaty, które [[proces]] cen <math>S_t</math> powinien spełniać: | P. Samuelson na nowo odkrył pracę L. Bacheliera z 1900 roku i na jej podstawie zaproponował postulaty, które [[proces]] cen <math>S_t</math> powinien spełniać: | ||
:# Ceny są plusowe, czyli <math>\forall_t\geqslant0</math>, <math>S_t>0</math>, a <math>S_0</math> jest stałą | :# Ceny są plusowe, czyli <math>\forall_t \geqslant0</math>, <math>S_t>0</math>, a <math>S_0</math> jest stałą | ||
:# Procentowe wahanie cen akcji nie jest zależne od ceny obecnej jak i od cen w przeszłości, czyli <math>\forall_{t, h}\geqslant0</math> <math>\dfrac{S_{t+h}}{S_t}</math> jest niezależna od <math> | :# Procentowe wahanie cen akcji nie jest zależne od ceny obecnej jak i od cen w przeszłości, czyli <math>\forall_{t, h} \geqslant0</math> <math>\dfrac{S_{t+h}}{S_t}</math> jest niezależna od <math>\sigma (S_u: u \leqslant t)</math> | ||
:# [[Zmiana]] ta (a precyzyjniej rozkład zmiany) jest zależna tylko od długości okresu czasu, na którym jest rozpatrywana, jednak nie jest istotne, od której chwili ją liczymy, tj. <math>\forall_{t, h}\geqslant0</math>, <math>\dfrac{S_{t+h}}{S_t}\backsim\dfrac{S_h}{S_0}</math> | :# [[Zmiana]] ta (a precyzyjniej rozkład zmiany) jest zależna tylko od długości okresu czasu, na którym jest rozpatrywana, jednak nie jest istotne, od której chwili ją liczymy, tj. <math>\forall_{t, h} \geqslant0</math>, <math>\dfrac{S_{t+h}}{S_t} \backsim \dfrac{S_h}{S_0}</math> | ||
:#Proces <math>S_t</math> ma nieprzerwane (ciągłe) trajektorie (J. Jakubowski 2011, s. 76). | :#Proces <math>S_t</math> ma nieprzerwane (ciągłe) trajektorie (J. Jakubowski 2011, s. 76). | ||
<google>t</google> | <google>t</google> | ||
Linia 43: | Linia 43: | ||
==Klasyczny model Blacka-Scholesa== | ==Klasyczny model Blacka-Scholesa== | ||
Zakładamy, że (<math> | Zakładamy, że (<math>\Omega</math>, <math>\mathcal{F}</math>, ''P'') jest przestrzenią probabilistyczną z filtracją <math>\mathbb{F}=(\mathcal{F}_t)_{t \in[0, T]}</math>. Mamy na niej zadany proces Wienera. | ||
Naszym założeniem jest sytuacja w której mamy do czynienia z rynkiem idealnym. Posiadamy na nim jeden papier ryzykowny - akcje, które nie płacą dywidend, o cenie podanej wzorem ''<math>dS_t= | Naszym założeniem jest sytuacja w której mamy do czynienia z rynkiem idealnym. Posiadamy na nim jeden papier ryzykowny - akcje, które nie płacą dywidend, o cenie podanej wzorem ''<math>dS_t=\mu S_tdt+ \sigma S_tdW_t, \qquad \sigma >0, \mu \in \mathbb{R}</math>''. | ||
Posiadamy również na tym rynku [[rachunek]] bankowy o niezmiennej stopie procentowej <math>r\ | Posiadamy również na tym rynku [[rachunek]] bankowy o niezmiennej stopie procentowej <math>r \geqslant 0</math> w pełnym okresie handlu [0, ''T''] i nieustannej kapitalizacji, tj. przebieg wartości jednostki pieniężnej jest podany równaniem ''<math>dB_t = rB_tdt, \qquad B_0 = 1</math>'' | ||
zatem ''<math>B_t=e^{rt}</math>'' | zatem ''<math>B_t = e^{rt}</math>'' | ||
Zakładając, że rynek jest idealny wiemy, że wszyscy mają identyczną wiedzę, a [[informacje]] w naszym modelu są inkasowane wyłącznie dzięki przyglądaniu się procesowi cen ''S'' to o σ-ciele ''<math>\mathcal{F}_t</math>'' analizowanym jako [[wiedza]] zdobyta do chwili ''t'' zakładamy, że '<math>\mathcal{F}_t=\mathcal{F}_t^S</math>''. | Zakładając, że rynek jest idealny wiemy, że wszyscy mają identyczną wiedzę, a [[informacje]] w naszym modelu są inkasowane wyłącznie dzięki przyglądaniu się procesowi cen ''S'' to o σ-ciele ''<math>\mathcal{F}_t</math>'' analizowanym jako [[wiedza]] zdobyta do chwili ''t'' zakładamy, że '<math>\mathcal{F}_t= \mathcal{F}_t^S</math>''. | ||
Ponieważ jedynym wynikiem wzoru ''<math>dS_t= | Ponieważ jedynym wynikiem wzoru ''<math>dS_t=\mu S_tdt+ \sigma S_tdW_t</math>'' | ||
jest ''<math>S_t=S_0 exp ( | jest ''<math>S_t=S_0 exp (\sigma W_t+(\mu -\frac{1}{2} \sigma^2)t)</math>'' więc ''<math>\mathcal{F}_t^W = \mathcal{F}_t^S</math>''. | ||
Reasumując zakładamy, że filtracja ''<math>\mathcal{F}_t</math>'' jest dopełnioną filtracją procesu Wienera, tj. ''<math>\mathcal{F}_t=\mathcal{F}_t^W</math> i <math>\mathcal{F}=\mathcal{F}_T</math>''. | Reasumując zakładamy, że filtracja ''<math>\mathcal{F}_t</math>'' jest dopełnioną filtracją procesu Wienera, tj. ''<math>\mathcal{F}_t= \mathcal{F}_t^W</math> i <math>\mathcal{F}= \mathcal{F}_T</math>''. | ||
Ukazany model jest dość dużym uproszczeniem rzeczywistości. Jego zaletą są łatwe założenia zrozumiałe dla większości. Z tego właśnie powodu służy on jako początkowe przybliżenie (J. Jakubowski 2011, s. 77-78). | Ukazany model jest dość dużym uproszczeniem rzeczywistości. Jego zaletą są łatwe założenia zrozumiałe dla większości. Z tego właśnie powodu służy on jako początkowe przybliżenie (J. Jakubowski 2011, s. 77-78). | ||
Linia 73: | Linia 73: | ||
<math>P=X\cdot e^{-r\cdot T}\cdot N (-d_2)-S\cdot N (-d_1)</math> | <math>P=X\cdot e^{-r\cdot T}\cdot N (-d_2)-S\cdot N (-d_1)</math> | ||
<math>d_1=\dfrac{ln\left (\frac{S}{X} \right)+(r+\tfrac{ | <math>d_1=\dfrac{ln \left( \frac{S}{X} \right) + (r + \tfrac{\delta^2}{2}) \cdot T}{\delta \cdot \sqrt{T}}</math> | ||
<math>d_2=\dfrac{ln\left (\frac{S}{X} \right)+(r-\tfrac{ | <math>d_2=\dfrac{ln \left (\frac{S}{X} \right)+(r-\tfrac{\delta^2}{2})\cdot T}{\delta \cdot \sqrt{T}}=d_1- \delta \cdot \sqrt{T}</math> | ||
gdzie: | gdzie: | ||
Linia 90: | Linia 90: | ||
:'''POLECENIE''' | :'''POLECENIE''' | ||
"Rozpatrzmy przykład europejskiej opcji kupna akcji o następujących parametrach: długość terminu do wygaśnięcia 6 miesięcy (T=0,5), cena wykonania 30 zł (X=30), aktualna cena 25 zł (S=25), [[stopa wolna od ryzyka]] 12% (r=12), odchylenie standardowe stopy zwrotu akcji 20% (<math> | "Rozpatrzmy przykład europejskiej opcji kupna akcji o następujących parametrach: długość terminu do wygaśnięcia 6 miesięcy (T=0,5), cena wykonania 30 zł (X=30), aktualna cena 25 zł (S=25), [[stopa wolna od ryzyka]] 12% (r=12), odchylenie standardowe stopy zwrotu akcji 20% (<math>\delta =0,2</math>), w czasie ważności opcji nie będzie wypłacana [[dywidenda]]. | ||
:'''ROZWIĄZANIE''' | :'''ROZWIĄZANIE''' | ||
<math>d_1=\dfrac{ln\left (\frac{25}{30} \right)+(0,12+\tfrac{0,2^2}{2})\cdot0,5}{0,2\cdot\sqrt{0,5}} | <math>d_1= \dfrac{ln \left( \frac{25}{30} \right) + (0,12+ \tfrac{0,2^2}{2}) \cdot0,5}{0,2 \cdot \sqrt{0,5}} \asymp \dfrac{-0,1123}{0,1414} \asymp -0,7942</math> | ||
<math>d_2=-0,7942-0,2\cdot\sqrt{0,5} | <math>d_2=-0,7942-0,2 \cdot \sqrt{0,5} \asymp -0,9356</math> | ||
<math>N (d_1) | <math>N (d_1) \asymp 0,22</math> | ||
<math>N (d_2) | <math>N (d_2) \asymp 0,18</math> | ||
<math>C=25\ | <math>C = 25 \cdot 0,22 - 30 \cdot e^{-0,12 \cdot 0,5} \cdot 0,18 \asymp 0,41</math> | ||
:'''INTERPRETACJA''' | :'''INTERPRETACJA''' | ||
Linia 110: | Linia 110: | ||
Gdyby rozpatrywana [[opcja]] była opcją sprzedaży, wówczas na podstawie wzoru <math>P=X\cdot e^{-r\cdot T}\cdot N (-d_2)-S\cdot N (-d_1)</math> jej wartość jest równa 3,66 zł. | Gdyby rozpatrywana [[opcja]] była opcją sprzedaży, wówczas na podstawie wzoru <math>P=X\cdot e^{-r\cdot T}\cdot N (-d_2)-S\cdot N (-d_1)</math> jej wartość jest równa 3,66 zł. | ||
<math>P=30\cdot e^{-0,12\ | <math>P = 30 \cdot e^{-0,12 \cdot 0,5} \cdot N (0,9356) - 25 \cdot N (0,7942) \asymp 23,16 - 19,5 = 3,66</math> (W. Tarczyński, M. Zwolankowski 1999, s. 173-174)." | ||
==Bibliografia== | ==Bibliografia== |
Wersja z 22:37, 21 paź 2023
Model Blacka Scholesa |
---|
Polecane artykuły |
"Model Blacka-Scholesa - model badający zmianę wartości portfela ze względu na zmiany cen akcji i upływ czasu. Model ten daje matematyczne uzasadnienie wartości opcji kupna (W. Tarczyński, M. Zwolankowski 1999, s. 172)." Matematyczny model zajmujący się badaniem rynku z czasem ciągłym. Model ten opiera się na aksjomatach procesu cen, które zostały zaproponowane w 1965 roku przez Paula Samuelsona (J. Jakubowski 2011, s. 76).
TL;DR
Artykuł przedstawia model Blacka-Scholesa, który służy do badania zmiany wartości portfela ze względu na zmiany cen akcji i upływ czasu. Model ten opiera się na postulatach Samuela i przyjmuje założenia dotyczące rynku idealnego. Przedstawione są również wzory Blacka-Scholesa do wyceny opcji. Artykuł porównuje również model Blacka-Scholesa z modelem dwumianowym i podaje przykład wyceny opcji.
Postulaty Samuelsona
P. Samuelson na nowo odkrył pracę L. Bacheliera z 1900 roku i na jej podstawie zaproponował postulaty, które proces cen Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle S_t} powinien spełniać:
- Ceny są plusowe, czyli Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \forall_t \geqslant0} , Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle S_t>0} , a Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle S_0} jest stałą
- Procentowe wahanie cen akcji nie jest zależne od ceny obecnej jak i od cen w przeszłości, czyli Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \forall_{t, h} \geqslant0} Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \dfrac{S_{t+h}}{S_t}} jest niezależna od Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \sigma (S_u: u \leqslant t)}
- Zmiana ta (a precyzyjniej rozkład zmiany) jest zależna tylko od długości okresu czasu, na którym jest rozpatrywana, jednak nie jest istotne, od której chwili ją liczymy, tj. Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \forall_{t, h} \geqslant0} , Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \dfrac{S_{t+h}}{S_t} \backsim \dfrac{S_h}{S_0}}
- Proces Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle S_t} ma nieprzerwane (ciągłe) trajektorie (J. Jakubowski 2011, s. 76).
Przyjęte założenia do modelu
Prawidłowość wskazań modelu jest zależna od tez, które powinien spełniać. F.Black i M. Scholes tworząc model wyceny opcji kierowali się następującymi założeniami:
- Ceny akcji reagują zgodnie z rozkładem logarytmiczno-normalnym, a parametry tego rozkładu są stałe,
- Całość kosztów transakcji jak i podatki są równe zero a akcje, które są przedmiotem opcji muszą być doskonale podzielone,
- W cyklu ważności opcji, nie przynoszą dywidend akcje bazowe dla danej opcji,
- Nie ma takiej możliwości, aby wystąpił pozbawiony ryzyka arbitraż,
- Występuje ciągły obrót papierami wartościowymi,
- Uczestnicy rynku mają prawo pożyczać i inwestować środki zgodnie z tą samą wolną od ryzyka stopą procentową,
- Krótkoterminowa stopa procentowa, wolna od ryzyka jest stała (W. Tarczyński, M. Zwolankowski 1999, s. 171),
- Rynek funkcjonuje w sposób ciągły,
- Za zajmowanie krótkiej pozycji nie ma kary,
- Cena sprzedaży akcji jest identyczna jak cena kupna (dla wszystkich instrumentów) (A. Weron, R. Weron 2009, s. 183).
Klasyczny model Blacka-Scholesa
Zakładamy, że (Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \Omega} , Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \mathcal{F}} , P) jest przestrzenią probabilistyczną z filtracją Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \mathbb{F}=(\mathcal{F}_t)_{t \in[0, T]}} . Mamy na niej zadany proces Wienera.
Naszym założeniem jest sytuacja w której mamy do czynienia z rynkiem idealnym. Posiadamy na nim jeden papier ryzykowny - akcje, które nie płacą dywidend, o cenie podanej wzorem Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle dS_t=\mu S_tdt+ \sigma S_tdW_t, \qquad \sigma >0, \mu \in \mathbb{R}} .
Posiadamy również na tym rynku rachunek bankowy o niezmiennej stopie procentowej Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle r \geqslant 0} w pełnym okresie handlu [0, T] i nieustannej kapitalizacji, tj. przebieg wartości jednostki pieniężnej jest podany równaniem Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle dB_t = rB_tdt, \qquad B_0 = 1}
zatem Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle B_t = e^{rt}}
Zakładając, że rynek jest idealny wiemy, że wszyscy mają identyczną wiedzę, a informacje w naszym modelu są inkasowane wyłącznie dzięki przyglądaniu się procesowi cen S to o σ-ciele Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \mathcal{F}_t} analizowanym jako wiedza zdobyta do chwili t zakładamy, że 'Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \mathcal{F}_t= \mathcal{F}_t^S} .
Ponieważ jedynym wynikiem wzoru Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle dS_t=\mu S_tdt+ \sigma S_tdW_t}
jest Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle S_t=S_0 exp (\sigma W_t+(\mu -\frac{1}{2} \sigma^2)t)} więc Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \mathcal{F}_t^W = \mathcal{F}_t^S} .
Reasumując zakładamy, że filtracja Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \mathcal{F}_t} jest dopełnioną filtracją procesu Wienera, tj. Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \mathcal{F}_t= \mathcal{F}_t^W} i Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \mathcal{F}= \mathcal{F}_T} .
Ukazany model jest dość dużym uproszczeniem rzeczywistości. Jego zaletą są łatwe założenia zrozumiałe dla większości. Z tego właśnie powodu służy on jako początkowe przybliżenie (J. Jakubowski 2011, s. 77-78).
Model Blacka-Scholesa a model dwumianowy
Logika tego modelu jest zbliżona do modelu dwumianowego. "Punktem wyjścia jest również portfel pozbawiony ryzyka, który składa się z opcji i akcji bazowej dla tej opcji. Jeżeli przyjmuje się założenie, że arbitraż jest niemożliwy, to stopa zwrotu z takiego portfela jest równa stopie procentowej wolnej od ryzyka. Najważniejszą różnicą między modelem dwumianowym i modelem Blacka-Scholesa jest fakt, że w modelu Blacka-Scholesa zmiany cen instrumentu podstawowego są ciągłe, natomiast w modelu dwumianowym zmiany cen akcji zachodzą w sposób skokowy (W. Tarczyński, M. Zwolankowski 1999, s. 171)."
Wartość opcji ustalona w oparciu o model dwumianowy będzie się przybliżać do wartości opcji określonej za pomocą modelu Blacka-Scholesa wraz z powiększaniem liczby okresów w modelu drzew dwumianowych (W. Tarczyński, M. Zwolankowski 1999, s. 174).
Wzory Blacka-Scholesa
Wprowadzenie równań modelu Blacka-Scholesa polega na złożonych przekształceniach matematycznych opartych na tezie, że wahania kursu akcji określane są procesem stochastycznym - "geometryczny proces Wienera". Wzory Blacka-Scholesa przy wymienionych wcześniej założeniach wyglądają następująco
Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle C=S\cdot N (d_1)-X\cdot e^{-r\cdot T}\cdot N (d_2)}
Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle P=X\cdot e^{-r\cdot T}\cdot N (-d_2)-S\cdot N (-d_1)}
Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle d_1=\dfrac{ln \left( \frac{S}{X} \right) + (r + \tfrac{\delta^2}{2}) \cdot T}{\delta \cdot \sqrt{T}}}
Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle d_2=\dfrac{ln \left (\frac{S}{X} \right)+(r-\tfrac{\delta^2}{2})\cdot T}{\delta \cdot \sqrt{T}}=d_1- \delta \cdot \sqrt{T}}
gdzie:
- C - wartość europejskiej opcji kupna,
- P - wartość europejskiej opcji sprzedaży,
- S - bieżąca cena akcji,
- X - cena wykonania opcji,
- r - stopa procentowa wolna od ryzyka,
- T - czas do terminu wygaśnięcia opcji wyrażona w latach,
- δ - odchylenie standardowe stopy zwrotu akcji,
- N (d) - wartość dystrybuanty standaryzowanego rozkładu normalnego dla argumentu d (W. Tarczyński, M. Zwolankowski 1999, s. 172).
Przykład
- POLECENIE
"Rozpatrzmy przykład europejskiej opcji kupna akcji o następujących parametrach: długość terminu do wygaśnięcia 6 miesięcy (T=0,5), cena wykonania 30 zł (X=30), aktualna cena 25 zł (S=25), stopa wolna od ryzyka 12% (r=12), odchylenie standardowe stopy zwrotu akcji 20% (Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \delta =0,2} ), w czasie ważności opcji nie będzie wypłacana dywidenda.
- ROZWIĄZANIE
Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle d_1= \dfrac{ln \left( \frac{25}{30} \right) + (0,12+ \tfrac{0,2^2}{2}) \cdot0,5}{0,2 \cdot \sqrt{0,5}} \asymp \dfrac{-0,1123}{0,1414} \asymp -0,7942}
Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle d_2=-0,7942-0,2 \cdot \sqrt{0,5} \asymp -0,9356}
Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle N (d_1) \asymp 0,22}
Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle N (d_2) \asymp 0,18}
Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle C = 25 \cdot 0,22 - 30 \cdot e^{-0,12 \cdot 0,5} \cdot 0,18 \asymp 0,41}
- INTERPRETACJA
Z przeprowadzonych obliczeń wynika, że wartość opcji jest równa 0,41 zł. Można wykazać, że wartość Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle N (d_1)} jest równa współczynnikowi delta, co jest dodatkową zaletą korzystania z modelu Blacka-Scholesa.
Gdyby rozpatrywana opcja była opcją sprzedaży, wówczas na podstawie wzoru Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle P=X\cdot e^{-r\cdot T}\cdot N (-d_2)-S\cdot N (-d_1)} jej wartość jest równa 3,66 zł.
Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle P = 30 \cdot e^{-0,12 \cdot 0,5} \cdot N (0,9356) - 25 \cdot N (0,7942) \asymp 23,16 - 19,5 = 3,66} (W. Tarczyński, M. Zwolankowski 1999, s. 173-174)."
Bibliografia
- Weron A., Weron R. (2009), Inżynieria finansowa: Wycena instrumentów pochodnych, Symulacje komputerowe, Statystyka rynku, Wydawnictwo Naukowo-Techniczne, Warszawa
- Tarczyński W., Zwolankowski M. (1999) Inżynieria finansowa: Instrumentarium, Strategie, Zarządzanie ryzykiem, Agencja Wydawnicza PLACET, Warszawa
- Jakubowski J. (2011), Modele matematyczne rynków instrumentów pochodnych I., Uniwersytet Warszawski (2011): 76-114
- Black F., Scholes M. (1973), The pricing of options and corporate liabilities., Journal of political economy 81.3 (1973): 637-654.
- Piontek K. (2000), Efekt dni tygodnia i jego wpływ na wycenę opcji., Finanse, Banki i Ubezpieczenia w Polsce u progu XXI wieku, Materiały konferencyjne, Poznań (2000).
- Jajuga K. (2013), Ryzyko modelu a miary ryzyka., Studia Ekonomiczne 152 (2013): 73-81.
Autor: Aleksandra Galica