Stopa zwrotu: Różnice pomiędzy wersjami
m (Infobox update) |
(LinkTitles.) |
||
Linia 16: | Linia 16: | ||
'''Stopa zwrotu''' - „wyrażony w procentach zwrot osiągnięty z [[inwestycja|inwestycji]] w danym roku w relacji do jej kosztu.”<ref>[1] Mayo H.B. (2014) ''Inwestycje'', Wydawnictwo Naukowe PWN, Warszawa, str 7.</ref> | '''Stopa zwrotu''' - „wyrażony w procentach zwrot osiągnięty z [[inwestycja|inwestycji]] w danym roku w relacji do jej kosztu.”<ref>[1] Mayo H.B. (2014) ''[[Inwestycje]]'', Wydawnictwo Naukowe PWN, Warszawa, str 7.</ref> | ||
Podstawowym celem obliczania stopy zwrotu jest ocena [[Wskaźnik rentowności|rentowności]] inwestycji. [[Inwestor|Inwestorowi]] zależy, by była ona możliwie najwyższa. Oczekiwana stopa zwrotu jest jedynie szacunkiem i nierzadko różni się od faktycznej, zrealizowanej, przez co łączona jest z [[Ryzyko inwestycyjne|ryzykiem inwestycyjnym]].<ref>[2] Mayo H.B. (2014) ''Inwestycje'', Wydawnictwo Naukowe PWN, Warszawa, str 7</ref> | Podstawowym celem obliczania stopy zwrotu jest [[ocena]] [[Wskaźnik rentowności|rentowności]] inwestycji. [[Inwestor|Inwestorowi]] zależy, by była ona możliwie najwyższa. Oczekiwana stopa zwrotu jest jedynie szacunkiem i nierzadko różni się od faktycznej, zrealizowanej, przez co łączona jest z [[Ryzyko inwestycyjne|ryzykiem inwestycyjnym]].<ref>[2] Mayo H.B. (2014) ''Inwestycje'', Wydawnictwo Naukowe PWN, Warszawa, str 7</ref> | ||
Stopy zwrotu, zwane także stopami zmian, zalicza się do mierników efektywności [[Inwestowanie|inwestycji finansowych]], oblicza się je na podstawie szeregów cen i kursów. | Stopy zwrotu, zwane także stopami zmian, zalicza się do mierników efektywności [[Inwestowanie|inwestycji finansowych]], oblicza się je na podstawie szeregów cen i kursów. | ||
Linia 31: | Linia 31: | ||
== Prosta stopa zwrotu == | == Prosta stopa zwrotu == | ||
{{#ev:youtube|Q1qALh51ijw|480|right|Opłacalność projektu (Sławomir Wawak)|frame}} | {{#ev:youtube|Q1qALh51ijw|480|right|Opłacalność projektu (Sławomir Wawak)|frame}} | ||
'''Prosta stopa zwrotu''', określana jako SRR (z ang. Simple rate of return) - jest to stosunek „korzyści netto uzyskanych dzięki inwestycji w danym okresie czasu, najczęściej roku, do zaangażowanego w nią [[Kapitał|kapitału]] ([[Nakłady|nakładu]] inwestycyjnego).”<ref>[4] Rogowski W. (2013) ''Rachunek efektywności i inwestycji. Wyzwania teorii i potrzeby praktyki'', Wolters Kluwer Polska, Warszawa, s.237</ref>. W najogólniejszym ujęciu wzór składa się z ilorazu powyżej wymienionych czynników: | '''Prosta stopa zwrotu''', określana jako SRR (z ang. Simple rate of return) - jest to stosunek „korzyści netto uzyskanych dzięki inwestycji w danym okresie czasu, najczęściej roku, do zaangażowanego w nią [[Kapitał|kapitału]] ([[Nakłady|nakładu]] inwestycyjnego).”<ref>[4] Rogowski W. (2013) ''[[Rachunek]] efektywności i inwestycji. Wyzwania teorii i [[potrzeby]] praktyki'', Wolters Kluwer Polska, Warszawa, s.237</ref>. W najogólniejszym ujęciu wzór składa się z ilorazu powyżej wymienionych czynników: | ||
<math>R=\frac{KN}{I} \cdot 100\%</math> | <math>R=\frac{KN}{I} \cdot 100\%</math> | ||
Linia 37: | Linia 37: | ||
Gdzie: | Gdzie: | ||
R - stopa zwrotu; | R - stopa zwrotu; | ||
KN - korzyść(zysk) netto; | KN - [[korzyść]]([[zysk]]) netto; | ||
I - kapitał(nakład) inwestycyjny<ref>[5] Rogowski W. (2013) ''Rachunek efektywności i inwestycji. Wyzwania teorii i potrzeby praktyki'', Wolters Kluwer Polska, Warszawa, s.237</ref> | I - [[kapitał]]([[nakład]]) inwestycyjny<ref>[5] Rogowski W. (2013) ''Rachunek efektywności i inwestycji. Wyzwania teorii i potrzeby praktyki'', Wolters Kluwer Polska, Warszawa, s.237</ref> | ||
Algorytm pozwala na uzyskanie dwóch postaci wyniku, z czego jedna bierze pod uwagę zarówno [[kapitał własny]], jak i obcy, których połączenie nazywamy całkowitym nakładem inwestycyjnym (ROI), natomiast druga wyłącznie [[kapitał własny]] (ROE). | [[Algorytm]] pozwala na uzyskanie dwóch postaci wyniku, z czego jedna bierze pod uwagę zarówno [[kapitał własny]], jak i obcy, których połączenie nazywamy całkowitym nakładem inwestycyjnym (ROI), natomiast druga wyłącznie [[kapitał własny]] (ROE). | ||
=== ROI === | === ROI === | ||
Linia 47: | Linia 47: | ||
<math> | <math> | ||
ROI = \frac{\text{zysk operacyjny opodatkowany}}{\text{całkowite nakłady inwestycyjne}} \cdot 100\%, | ROI = \frac{\text{[[zysk operacyjny]] opodatkowany}}{\text{całkowite [[nakłady]] inwestycyjne}} \cdot 100\%, | ||
</math> | </math> | ||
Linia 55: | Linia 55: | ||
ROE (z ang. Return of equity) - prosta [[stopa zwrotu z kapitału własnego]] - stosuje się ją w przypadku, gdy obliczana stopa zwrotu ma znaczenie jedynie dla właściciela, ponieważ w nakładach inwestycyjnych zawarta jest tylko ta część, którą stanowi kapitał własny. | ROE (z ang. Return of equity) - prosta [[stopa zwrotu z kapitału własnego]] - stosuje się ją w przypadku, gdy obliczana stopa zwrotu ma znaczenie jedynie dla właściciela, ponieważ w nakładach inwestycyjnych zawarta jest tylko ta część, którą stanowi kapitał własny. | ||
::<math>ROE = \frac{\text{zysk netto}}{\text{nakłady inwestycyjne finansowane kapitałem własnym}} \cdot 100\%,</math> | ::<math>ROE = \frac{\text{[[zysk netto]]}}{\text{[[nakłady inwestycyjne]] finansowane kapitałem własnym}} \cdot 100\%,</math> | ||
=== Charakterystyka metod === | === Charakterystyka metod === | ||
Obie metody wylicza się w odniesieniu do każdego z wyznaczonych okresów z osobna. Jak było wskazane wyżej, okres ten najczęściej przyjmuje czas jednego roku, a więc wylicza się tyle wartości ROE/ROI, ile lat trwa cykl inwestycyjny.<ref>[7] Rogowski W. (2013) ''Rachunek efektywności i inwestycji. Wyzwania teorii i potrzeby praktyki'', Wolters Kluwer Polska, Warszawa, s.238</ref> | Obie metody wylicza się w odniesieniu do każdego z wyznaczonych okresów z osobna. Jak było wskazane wyżej, okres ten najczęściej przyjmuje czas jednego roku, a więc wylicza się tyle wartości ROE/ROI, ile lat trwa [[cykl]] inwestycyjny.<ref>[7] Rogowski W. (2013) ''Rachunek efektywności i inwestycji. Wyzwania teorii i potrzeby praktyki'', Wolters Kluwer Polska, Warszawa, s.238</ref> | ||
Obiema metoda obliczamy bezwzględną opłacalność inwestycji, jednak ROI uwzględnia wszystkich mających wkład w kapitał, z kolei ROE określa opłacalność jedynie dla kapitału własnego - właściciela, który dzięki zastosowaniu metody może dowiedzieć się, jak efektywne były finansowane przez niego inwestycje.<ref>[8] Rogowski W. (2013) ''Rachunek efektywności i inwestycji. Wyzwania teorii i potrzeby praktyki'', Wolters Kluwer Polska, Warszawa, s.239</ref> | Obiema [[metoda]] obliczamy bezwzględną opłacalność inwestycji, jednak ROI uwzględnia wszystkich mających wkład w kapitał, z kolei ROE określa opłacalność jedynie dla kapitału własnego - właściciela, który dzięki zastosowaniu metody może dowiedzieć się, jak efektywne były finansowane przez niego inwestycje.<ref>[8] Rogowski W. (2013) ''Rachunek efektywności i inwestycji. Wyzwania teorii i potrzeby praktyki'', Wolters Kluwer Polska, Warszawa, s.239</ref> | ||
=== Wady i zalety === | === Wady i zalety === | ||
Wady i zalety metody prostych stóp zwrotu: | Wady i zalety metody prostych stóp zwrotu: | ||
Do niewątpliwych zalet tychże metod należy zaliczyć prostotę jej liczenia. Przedsiębiorstwa zazwyczaj dysponują informacjami, które zawarte są we wzorze. | Do niewątpliwych zalet tychże metod należy zaliczyć prostotę jej liczenia. Przedsiębiorstwa zazwyczaj dysponują informacjami, które zawarte są we wzorze. | ||
Posiada także szereg wad: wyznaczając opłacalność inwestycji opiera się na zysku, nie można więc uniwersalnie określić, czy dana inwestycja była dla podmiotu korzystna - zysk większy od zera, ale bardzo niski, będzie traktowany jako zysk niezadowalający. W tym miejscu można dostrzec drugą wadę metod prostych stóp zwrotu - graniczna stopa zwrotu uznawana za minimum ustalana jest subiektywnie. Metody te nie uwzględniają również zmian wartości pieniądze w czasie<ref>[9] Rogowski W. (2013) ''Rachunek efektywności i inwestycji. Wyzwania teorii i potrzeby praktyki'', Wolters Kluwer Polska, Warszawa, s.241</ref> | Posiada także szereg wad: wyznaczając opłacalność inwestycji opiera się na zysku, nie można więc uniwersalnie określić, czy dana [[inwestycja]] była dla podmiotu korzystna - zysk większy od zera, ale bardzo niski, będzie traktowany jako zysk niezadowalający. W tym miejscu można dostrzec drugą wadę metod prostych stóp zwrotu - graniczna stopa zwrotu uznawana za minimum ustalana jest subiektywnie. Metody te nie uwzględniają również zmian wartości pieniądze w czasie<ref>[9] Rogowski W. (2013) ''Rachunek efektywności i inwestycji. Wyzwania teorii i potrzeby praktyki'', Wolters Kluwer Polska, Warszawa, s.241</ref> | ||
== Księgowa stopa zwrotu == | == Księgowa stopa zwrotu == | ||
Metoda księgowej stopy zwrotu (ARR - z ang. Accounting rate of return) | Metoda księgowej stopy zwrotu (ARR - z ang. Accounting rate of return) | ||
Księgowa stopa zwrotu, podobnie jak ROE i ROI, ocenia opłacalność inwestycji poprzez zestawienie korzyści netto powstałych w jej wyniku oraz nakładu potrzebnego na realizację. Tym co różni ARR od dwóch poprzednio opisanych metod, jest wykorzystanie uśrednionych wartości dla obu składników wzoru - nie oblicza się ich osobno dla każdego okresu. Dlatego też księgową stopę zwrotu określa się jako średni księgowy zwrot (AAR - z ang. Averange accounting return) - wynikiem obliczeń będzie więc średni zwrot uzyskany z inwestycji.<ref>[10] Rogowski W. (2013) ''Rachunek efektywności i inwestycji. Wyzwania teorii i potrzeby praktyki'', Wolters Kluwer Polska, Warszawa, s.252</ref> | Księgowa stopa zwrotu, podobnie jak ROE i ROI, ocenia opłacalność inwestycji poprzez zestawienie korzyści netto powstałych w jej wyniku oraz nakładu potrzebnego na realizację. Tym co różni ARR od dwóch poprzednio opisanych metod, jest wykorzystanie uśrednionych wartości dla obu składników wzoru - nie oblicza się ich osobno dla każdego okresu. Dlatego też księgową stopę zwrotu określa się jako średni [[księgowy]] zwrot (AAR - z ang. Averange accounting return) - wynikiem obliczeń będzie więc średni zwrot uzyskany z inwestycji.<ref>[10] Rogowski W. (2013) ''Rachunek efektywności i inwestycji. Wyzwania teorii i potrzeby praktyki'', Wolters Kluwer Polska, Warszawa, s.252</ref> | ||
Wady i zalety obu metod są bardzo zbliżone, z tym, że metoda księgowej stopy zwrotu nie jest metodą okresową, a syntetyczną.<ref>[11] Rogowski W. (2013) ''Rachunek efektywności i inwestycji. Wyzwania teorii i potrzeby praktyki'', Wolters Kluwer Polska, Warszawa, s.256</ref> | Wady i zalety obu metod są bardzo zbliżone, z tym, że metoda księgowej stopy zwrotu nie jest metodą okresową, a syntetyczną.<ref>[11] Rogowski W. (2013) ''Rachunek efektywności i inwestycji. Wyzwania teorii i potrzeby praktyki'', Wolters Kluwer Polska, Warszawa, s.256</ref> | ||
Linia 75: | Linia 75: | ||
== Logarytmiczna stopa zwrotu == | == Logarytmiczna stopa zwrotu == | ||
Drugim sposobem jest obliczenie logarytmicznej stopy zwrotu. Wzór jest ilorazem dwóch wartości - kapitału obecnego oraz początkowego. Wynik następnie logarytmuje się (przez logarytm o podstawie liczby Eulera) | Drugim sposobem jest obliczenie logarytmicznej stopy zwrotu. Wzór jest ilorazem dwóch wartości - kapitału obecnego oraz początkowego. [[Wynik]] następnie logarytmuje się (przez logarytm o podstawie liczby Eulera) | ||
==Przypisy== | ==Przypisy== | ||
Linia 83: | Linia 83: | ||
*Gajdka J, Pietraszewski P. (2015) [http://wneiz.pl/nauka_wneiz/frfu/74-2015/FRFU-74-t2-93.pdf ''Wzrost zysków spółki a stopy zwrotu z akcji''] „Zeszyty Naukowe Uniwersytetu Szczecińskiego. Finanse, Rynki Finansowe, Ubezpieczenia” nr 855/nr 74, T.2 | *Gajdka J, Pietraszewski P. (2015) [http://wneiz.pl/nauka_wneiz/frfu/74-2015/FRFU-74-t2-93.pdf ''Wzrost zysków spółki a stopy zwrotu z akcji''] „Zeszyty Naukowe Uniwersytetu Szczecińskiego. Finanse, Rynki Finansowe, Ubezpieczenia” nr 855/nr 74, T.2 | ||
*Mayo H.B. (2014) ''Inwestycje'', Wydawnictwo Naukowe PWN, Warszawa | *Mayo H.B. (2014) ''Inwestycje'', Wydawnictwo Naukowe PWN, Warszawa | ||
*Michalski M.Ł. (2009) [http://journals.bg.agh.edu.pl/EKONOMIA/2009-06/EM_09.pdf ''Analiza metod oceny efektywności inwestycji rzeczowych''] | *Michalski M.Ł. (2009) [http://journals.bg.agh.edu.pl/EKONOMIA/2009-06/EM_09.pdf ''Analiza metod oceny efektywności inwestycji rzeczowych''] „[[Ekonomia]] Menedżerska” nr 6 | ||
*Mikrut A., Poznańska A., (2009) [http://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.desklight-1f888a35-0abb-4c84-9b74-64840fc9202b/c/wybrane_metody_oceny_efektywnosci_przedsiewziec.pdf ''Wybrane metody oceny efektywności przedsięwzięć inwestycyjnych''] „Zeszyty Naukowe Małopolskiej Wyższej Szkoły Ekonomicznej w Tarnowie” Z. 1(12/2009) | *Mikrut A., Poznańska A., (2009) [http://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.desklight-1f888a35-0abb-4c84-9b74-64840fc9202b/c/wybrane_metody_oceny_efektywnosci_przedsiewziec.pdf ''Wybrane metody oceny efektywności przedsięwzięć inwestycyjnych''] „Zeszyty Naukowe Małopolskiej Wyższej Szkoły Ekonomicznej w Tarnowie” Z. 1(12/2009) | ||
*Piasecki K., Tomasik E. (2013) [https://www.researchgate.net/profile/Krzysztof_Piasecki/publication/235708056_Rozklady_stop_zwrotu_z_instrumentow_polskiego_rynku_kapitalowego/links/0c960539eeb04eaf76000000.pdf ''Rozkłady stóp zwrotu''], Wydawnictwo Edu-Libru, Warszawa-Kraków | *Piasecki K., Tomasik E. (2013) [https://www.researchgate.net/profile/Krzysztof_Piasecki/publication/235708056_Rozklady_stop_zwrotu_z_instrumentow_polskiego_rynku_kapitalowego/links/0c960539eeb04eaf76000000.pdf ''Rozkłady stóp zwrotu''], Wydawnictwo Edu-Libru, Warszawa-Kraków |
Wersja z 01:17, 22 maj 2020
Stopa zwrotu |
---|
Polecane artykuły |
Stopa zwrotu - „wyrażony w procentach zwrot osiągnięty z inwestycji w danym roku w relacji do jej kosztu.”[1] Podstawowym celem obliczania stopy zwrotu jest ocena rentowności inwestycji. Inwestorowi zależy, by była ona możliwie najwyższa. Oczekiwana stopa zwrotu jest jedynie szacunkiem i nierzadko różni się od faktycznej, zrealizowanej, przez co łączona jest z ryzykiem inwestycyjnym.[2]
Stopy zwrotu, zwane także stopami zmian, zalicza się do mierników efektywności inwestycji finansowych, oblicza się je na podstawie szeregów cen i kursów. Występuje kilka podstawowych metod, których celem jest obliczanie stóp zwrotu:[3]
- proste (dyskretne)
- logarytmiczne (ciągłe)
Natomiast ze względu na wzajemne relacje występujące między nimi, stopy dzielą się na:
- nominalne stopy zwrotu
- realne stopy zwrotu
- efektywne stopy zwrotu
Prosta stopa zwrotu
{{#ev:youtube|Q1qALh51ijw|480|right|Opłacalność projektu (Sławomir Wawak)|frame}} Prosta stopa zwrotu, określana jako SRR (z ang. Simple rate of return) - jest to stosunek „korzyści netto uzyskanych dzięki inwestycji w danym okresie czasu, najczęściej roku, do zaangażowanego w nią kapitału (nakładu inwestycyjnego).”[4]. W najogólniejszym ujęciu wzór składa się z ilorazu powyżej wymienionych czynników:
Gdzie: R - stopa zwrotu; KN - korzyść(zysk) netto; I - kapitał(nakład) inwestycyjny[5]
Algorytm pozwala na uzyskanie dwóch postaci wyniku, z czego jedna bierze pod uwagę zarówno kapitał własny, jak i obcy, których połączenie nazywamy całkowitym nakładem inwestycyjnym (ROI), natomiast druga wyłącznie kapitał własny (ROE).
ROI
ROI (z ang. return of investment), to „prosta stopa zwrotu nakładów inwestycyjnych”[6] Wzor jest oparty na podstawowym algorytmie i zapisywany jest następująco:
Zysk operacyjny jest przeznaczony na rozdzielenie korzyści pomiędzy osoby mające wkład w kapitał, po wcześniejszym opodatkowaniu przez państwo.
ROE
ROE (z ang. Return of equity) - prosta stopa zwrotu z kapitału własnego - stosuje się ją w przypadku, gdy obliczana stopa zwrotu ma znaczenie jedynie dla właściciela, ponieważ w nakładach inwestycyjnych zawarta jest tylko ta część, którą stanowi kapitał własny.
Charakterystyka metod
Obie metody wylicza się w odniesieniu do każdego z wyznaczonych okresów z osobna. Jak było wskazane wyżej, okres ten najczęściej przyjmuje czas jednego roku, a więc wylicza się tyle wartości ROE/ROI, ile lat trwa cykl inwestycyjny.[7]
Obiema metoda obliczamy bezwzględną opłacalność inwestycji, jednak ROI uwzględnia wszystkich mających wkład w kapitał, z kolei ROE określa opłacalność jedynie dla kapitału własnego - właściciela, który dzięki zastosowaniu metody może dowiedzieć się, jak efektywne były finansowane przez niego inwestycje.[8]
Wady i zalety
Wady i zalety metody prostych stóp zwrotu: Do niewątpliwych zalet tychże metod należy zaliczyć prostotę jej liczenia. Przedsiębiorstwa zazwyczaj dysponują informacjami, które zawarte są we wzorze. Posiada także szereg wad: wyznaczając opłacalność inwestycji opiera się na zysku, nie można więc uniwersalnie określić, czy dana inwestycja była dla podmiotu korzystna - zysk większy od zera, ale bardzo niski, będzie traktowany jako zysk niezadowalający. W tym miejscu można dostrzec drugą wadę metod prostych stóp zwrotu - graniczna stopa zwrotu uznawana za minimum ustalana jest subiektywnie. Metody te nie uwzględniają również zmian wartości pieniądze w czasie[9]
Księgowa stopa zwrotu
Metoda księgowej stopy zwrotu (ARR - z ang. Accounting rate of return) Księgowa stopa zwrotu, podobnie jak ROE i ROI, ocenia opłacalność inwestycji poprzez zestawienie korzyści netto powstałych w jej wyniku oraz nakładu potrzebnego na realizację. Tym co różni ARR od dwóch poprzednio opisanych metod, jest wykorzystanie uśrednionych wartości dla obu składników wzoru - nie oblicza się ich osobno dla każdego okresu. Dlatego też księgową stopę zwrotu określa się jako średni księgowy zwrot (AAR - z ang. Averange accounting return) - wynikiem obliczeń będzie więc średni zwrot uzyskany z inwestycji.[10]
Wady i zalety obu metod są bardzo zbliżone, z tym, że metoda księgowej stopy zwrotu nie jest metodą okresową, a syntetyczną.[11]
Logarytmiczna stopa zwrotu
Drugim sposobem jest obliczenie logarytmicznej stopy zwrotu. Wzór jest ilorazem dwóch wartości - kapitału obecnego oraz początkowego. Wynik następnie logarytmuje się (przez logarytm o podstawie liczby Eulera)
Przypisy
- ↑ [1] Mayo H.B. (2014) Inwestycje, Wydawnictwo Naukowe PWN, Warszawa, str 7.
- ↑ [2] Mayo H.B. (2014) Inwestycje, Wydawnictwo Naukowe PWN, Warszawa, str 7
- ↑ [3] Thlon M., Sieradzki R. (2016) Ocena opłacalności i ryzyka inwestycji, Wydawnictwo Uniwersytetu Ekonomicznego w Krakowie, Kraków 2016, str 24
- ↑ [4] Rogowski W. (2013) Rachunek efektywności i inwestycji. Wyzwania teorii i potrzeby praktyki, Wolters Kluwer Polska, Warszawa, s.237
- ↑ [5] Rogowski W. (2013) Rachunek efektywności i inwestycji. Wyzwania teorii i potrzeby praktyki, Wolters Kluwer Polska, Warszawa, s.237
- ↑ [6] Rogowski W. (2013) Rachunek efektywności i inwestycji. Wyzwania teorii i potrzeby praktyki, Wolters Kluwer Polska, Warszawa, s.238
- ↑ [7] Rogowski W. (2013) Rachunek efektywności i inwestycji. Wyzwania teorii i potrzeby praktyki, Wolters Kluwer Polska, Warszawa, s.238
- ↑ [8] Rogowski W. (2013) Rachunek efektywności i inwestycji. Wyzwania teorii i potrzeby praktyki, Wolters Kluwer Polska, Warszawa, s.239
- ↑ [9] Rogowski W. (2013) Rachunek efektywności i inwestycji. Wyzwania teorii i potrzeby praktyki, Wolters Kluwer Polska, Warszawa, s.241
- ↑ [10] Rogowski W. (2013) Rachunek efektywności i inwestycji. Wyzwania teorii i potrzeby praktyki, Wolters Kluwer Polska, Warszawa, s.252
- ↑ [11] Rogowski W. (2013) Rachunek efektywności i inwestycji. Wyzwania teorii i potrzeby praktyki, Wolters Kluwer Polska, Warszawa, s.256
Bibliografia
- Gajdka J, Pietraszewski P. (2015) Wzrost zysków spółki a stopy zwrotu z akcji „Zeszyty Naukowe Uniwersytetu Szczecińskiego. Finanse, Rynki Finansowe, Ubezpieczenia” nr 855/nr 74, T.2
- Mayo H.B. (2014) Inwestycje, Wydawnictwo Naukowe PWN, Warszawa
- Michalski M.Ł. (2009) Analiza metod oceny efektywności inwestycji rzeczowych „Ekonomia Menedżerska” nr 6
- Mikrut A., Poznańska A., (2009) Wybrane metody oceny efektywności przedsięwzięć inwestycyjnych „Zeszyty Naukowe Małopolskiej Wyższej Szkoły Ekonomicznej w Tarnowie” Z. 1(12/2009)
- Piasecki K., Tomasik E. (2013) Rozkłady stóp zwrotu, Wydawnictwo Edu-Libru, Warszawa-Kraków
- Rogowski W. (2013) Rachunek efektywności i inwestycji. Wyzwania teorii i potrzeby praktyki, Wolters Kluwer Polska, Warszawa
- Thlon M., Sieradzki R. (2016) Ocena opłacalności i ryzyka inwestycji, Wydawnictwo Uniwersytetu Ekonomicznego w Krakowie, Kraków 2016
- Wrzosek S. (red.) (2008) Ocena efektywności inwestycji, Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu, Wrocław
Autor: Sebastian Chodyna, Karol Cabaj, Łukasz Buczak