Optymalizacja przewozów

Optymalizacja przewozów
Polecane artykuły

Optymalizacja przewozów służy do takiego rozplanowania przewozów aby koszty transportu były jak najniższe. Dotyczy to głównie przedsiębiorstw, których działalność wymaga dokonywania transportu dużej ilości produktów np: zboża, węgla, piasku czy cementu. Optymalizacja przewozów znana jest również pod pojęciem zagadnienia transportowe.

Planowanie i realizacja procesów transportowych, głównie optymalizacja decyzji operacyjnych w transporcie jest bardzo trudnym zadaniem. Powodem jest oddziaływanie różnorodnych czynników, chodzi tu głównie o czynniki zewnętrzne w stosunku do podmiotów transportowych i od nich niezależnych. Istotnym czynnikiem jest również złożoność procesów transportowych, stanowi wyzwanie dla nauk zajmujących się rozwiązywaniem problemów optymalizacyjnych. Między efektywnością procesów transportowych a podejmowanymi decyzjami istnieją nieliniowe zależności np. nie mogą funkcjonować optymalizacyjne programy. Choć jednym z najważniejszych celów jest stosowanie nowoczesnych technologii do optymalizacji decyzji to jest to w zasadzie niemożliwe, dlatego w praktyce wykorzystuje się metody o charakterze instytucjonalnym. Mimo że nie pozwalają one znaleźć najlepszego rozwiązania, to przynajmniej są w stanie wybrać takie, które jest zadowalające w krótszym czasie. (D. Milewski, 2007)

Według Dariusza Pyzy "Problematyka optymalizacji obsługi transportowej przez przedsiębiorstwa jest podejmowana przede wszystkim ze względu na minimalizację kosztów prowadzenia działalności. Oczywiście konieczne jest, aby opracowane plany obsługi transportowej były także dopuszczalne pod względem zgodności z normami prawnymi oraz maksymalnie wykorzystywały możliwości optymalizacji kosztów obsługi transportowej wynikające z aktualnych rozwiązań legislacyjnych. "(D.Pyza, 2012)

Wyróżnia się trzy poziomy planowania w optymalizacji przewozów:

  • Planowanie strategiczne - długoterminowy (od 3 do 5 lat), głównym zadaniem jest opracowanie i konfiguracja łańcucha dostaw.
  • Planowanie taktyczne - zarówno długo jak i krótkookresowy, wyznacza zasady przepływów w łańcuchach dostaw.
  • Planowanie operacyjne - łączy potrzeby klientów z obiektami łańcucha dostaw (głównie na poziomie dystrybucji, ale również produkcji czy zaopatrzenia. (M. Dobrzyński, 2010)

Etapy klasycznego algorytmu transportowego

  1. wyznaczenie wstępnego rozwiązania bazowego przy wykorzystaniu wybranej metody np:
    • metoda kąta północno-zachodniego,
    • metoda minimalnego elementu wiersza lub kolumny macierzy kosztów,
    • metoda minimalnego elementu macierzy kosztów.
  2. przy użyciu metody potencjałów należy sprawdzić, które rozwiązanie jest optymalne w tym celu należy zastosować wskaźnik optymalności

o= (ui + vj) - cij=0, gdzie cij= ui + vj

  1. w wypadku, gdy rozwiązanie jakie otrzymaliśmy nie jest optymalne wówczas należy wyznaczyć kolejne rozwiązanie. (D. Witkowska 2000 s. 66)

Elementy zagadnienia transportowego

  • Podaż dostawców - przez podaż dostawców należy rozumieć liczbę dostawców m posiadających am produktów.
  • Zapotrzebowanie odbiorców- przez zapotrzebowanie odbiorców należy rozumieć ilość odbiorców n, którym przedsiębiorstwo ma dostarczyć bn produktów.
  • Macierz kosztów przewozu- jest to macierz kij, gdzie i = (1,..., m) oraz j = (1,..., n) tj. koszt przewozu produktu od i-tego dostawcy do j-tego odbiorcy.
  • Macierz przewozów- jest to macierz xij, gdzie

i = (1,..., m) oraz j = (1,.., n) tj. ilość produktów przewieziona od i-tego dostawcy do j-tego odbiorcy. (E. Nowak 2003 s. 129-130)

Rodzaje zagadnień transportowych

  • zamknięte zagadnienie transportowe- występuje wówczas, gdy podaż dostawców jest równa zapotrzebowaniu odbiorców tj. wówczas gdy występuje następująca zależność ai = bj
  • otwarte zagadnienie transportowe- występuje wówczas, gdy podaż dostawców nie jest równa zapotrzebowaniu odbiorców tj. Wówczas gdy występuje następująca zależność
    • ai > aj oznacza to, iż podaż dostawców jest większa od zapotrzebowania odbiorców.
    • ai < aj oznacza to, iż podaż dostawców jest mniejsza od zapotrzebowania.

Postać klasycznego algorytmu transportowanego dla zamkniętych zagadnień transportowych.

  1. Warunki ograniczające dla dostawców:
  • xij=ai, gdzie

xij elementy macierzy przewozów

  1. Warunki ograniczające dla odbiorców:
  • xij=bj
  • ai = bj
  • cijxij - min

Przykład

Na podstawie danych zawartych w poniższej tabelce zbudowany zostanie model zagadnienia transportowego, w którym występuje czterech odbiorców i trzech dostawców.

Odbiorcy/Dostawcy O1 O2 O3 O4 Zasoby dostawców ai
D1 2 1 3 1 20
D2 4 2 1 2 10
D3 1 3 1 4 20
Zapotrzebowanie odbiorców bj 20 15 5 10 50


Etap I określenie rodzaju zagadnienia (otwarte lub zamknięte)

ai = bj,

50=50 więc jest to zagadnienie transportowe zamknięte

Etap II wyznaczenie warunków ograniczających dla dostawców i odbiorców.

  1. Warunki ograniczające dla dostawców:
  • X11 + X12 +X13 + X14 = 20
  • X21 + X22 + X23 + X24 =10
  • X31 + X32 + X33 + X34 =20
  1. Warunki ograniczające dla odbiorców:
  • X11 + X21 + X31= 20
  • X12 + X22 + X32 = 15
  • X13 + X23 + X33 = 5
  • X14 + X24 + X34= 10

Etap III wyznaczenie funkcji celu

  • 2x11 + x12 + 3x13 + x14 +4x21+2x22 + x23 + 2x24 +x31+ 3x32 +x33 + 4x34 - min

Funkcja celu wyznaczana jest z wartości znajdujących się w tabelce odzwierciedlającej macierz.

Etap IV wyznaczamy optymalne rozwiązanie przy wykorzystaniu metody kąta północno - zachodniego

Odbiorcy/Dostawcy O1 O2 O3 O4 Zasoby dostawców ai
D1 20 20
D2 10 10
D3 5 5 10 20
Zapotrzebowanie odbiorców bj 20 15 5 10 50

W metodzie kąta północno - zachodniego wielkość przewozu x11 wyznaczamy jako min (20,20) czyli x11=20 popyt pierwszego dostawcy został w pełni zaspokojony, następnie x22 wyznaczamy jako min (10,5) odbiorca drugi nie zaspokoił zgłaszanego popytu pozostało jeszcze 5 jednostek towaru, natomiast dostawca trzeci posiada jeszcze 5 jednostek towaru co sprawia, iż popyt zostaje w pełni zaspokojony. Taki tryb postępowania prowadzony jest, aż zostaną wyczerpane wszystkie możliwości.

  1. Wyznaczone za pomocą metody kąta północno - zachodniego rozwiązanie jest optymalne i jest następujące:
  • x11 = 20, x22= 10, x32=5, x33=5, x34=10,
  • x12=x13=x21=x23=x31=0

Etap V wyznaczenie wartości funkcji celu.

2x20+2x10+3x5+5+4x10= 40+20+15+5+40=120

Tak więc, wartość funkcji celu wynosi 120 i jest to najniższy koszt transportu.

Bibliografia

Autor: Krzysztof, Iwona Bonarska, Kamil Niemiec