Współczynnik korelacji rang Spearmana

Współczynnik korelacji rang Spearmana
Polecane artykuły


Współczynnik korelacji rang Spearmana (Spearman rank correlation coefficient) jest jedną z nieparametrycznych miar monotonicznej zależności statystyczne między zmiennymi losowymi. Współczynnik ten jest wykorzystywany do opisu siły korelacji dwóch cech, wtedy gdy są one mierzalne, badana zbiorowość jest nieliczna oraz mają charakter jakościowy i istnieje możliwość ich uporządkowania. Miarę tę stosuję się również do badania zależności między cechami ilościowymi w przypadku niewielkiej liczby obserwacji.

Obliczenia

Współczynnik korelacji rang Spearmana wyprowadza się ze wzoru na współczynnik korelacji liniowej Bravaisa-Pearsona\[ r_S = 1-{\frac {6 \sum\limits_{i=1}^n d_i^2}{n (n^2 - 1)}} \]

Z tego wzoru możemy wyprowadzić wzór na współczynnik korelacji rang Spearmana:

półczynnik korelacji rang Spearmana wyprowadza się ze wzoru na współczynnik korelacji liniowej Bravaisa-Pearsona\[ r_{xy} = {\frac {\sum\limits_{i=1}^n (x_i-\bar{x})(y_i-\bar{y})} { \sqrt{\sum\limits_{i=1}^n {(x_i-\bar{x})^2}} \sqrt{\sum\limits_{i=1}^n{(y_i-\bar{y})^2}} }} \]

Etapy

Etapy obliczeń rang Spearmana:

  1. Uporządkowanie zmiennych (malejąco, rosnąco)
  2. Nadanie zmiennym numerów kolejnych liczb naturalnych (rangowanie), odpowiadające ich miejscu w uporządkowaniu (tzn 1,2,.......).

Interpretacja

W przypadku wystąpienia jednakowych wartości realizacji zmiennych, należy przyporządkować im średnią arytmetyczną obliczoną z ich kolejnych numerów.

Współczynnik korelacji rang przyjmuje wartości liczbowe z przedziału [-1;1]. Jednakowe rangi wartości zmiennych badanych świadczą o istnieniu dodatniej między nimi korelacji (X= Y =1), tzn Y rośnie zawsze wtedy gdy X i na odwrót. Numeracja przeciwstawna sugeruje istnienie korelacji ujemnej. Dodatni znak współczynnika świadczy o istnieniu współzależności dodatniej, ujemny świadczy o korelacji ujemnej. Im bardziej współczynnik korelacji jest bliższy jedności, tym zależność korelacyjna jest silniejsza. W przypadku gdy rs= 0 świadczy o braku związku korelacyjnego między badanymi zmiennymi.

Cechy i zastosowanie

    • Znajduje zastosowanie w analizie danych niskiej jakości ponieważ w niewielkim stopniu jest wrażliwa na obserwacje odstające
    • Wraz z testami istotności może być wykorzystywany w porównaniach zmiennych
    • Zależność między zmiennymi losowymi nie musi oznaczać związku przyczynowo-skutkowego. Jedynie wykazuje że występuje zależność
    • Może być opisana jako nachylenie prostej dopasowanej do zbioru par rang

Przykład

Wyniki egzaminu z prawa i statystyki 10 studentów kierunku Ekonomia prezentuje poniższa tabelka. Za pomocą współczynnika korelacji rang Spearmana ustala kierunek i siłę korelacji pomiędzy wynikami z obu egzaminów.

Student A B C D E F G H I J
Liczba punktów z prawa 2 8 18 9 12 15 7 5 14 16
Liczba punktów ze statystyki 80 60 85 30 57 72 81 98 65 47

Pierwszym krokiem jest wyznaczenie rang według cechy X (prawo) i cechy Y (statystyka).

Student C J F I E D B G H A ogółem
Rangi według X (prawo) 1 2 3 4 5 6 7 8 9 10 -
Rangi według Y (statystyka) 2 9 5 6 8 10 7 3 1 4 -
Różnica rang -1 -7 -2 -2 -3 -4 0 5 8 6 -
Kwadrat różnicy rang 1 49 4 4 9 16 0 25 64 36 208

\(R_{xy}=\frac {6*208} {10*99} = 1 - \frac {1248} {990} = -0,26 \)

Istnieje słaba ujemna zależność pomiędzy wynikami egzaminu z prawa i ze statystyki.

Bibliografia

  • Aczel A. D.,(2006), Statystyka w Zarządzaniu, Warszawa
  • Sobczyk M.,(2002), Statystyka, Wydawnictwo PWN, Warszawa
  • Starzyńska W., (2005), Statystyka praktyczna, PWN, Warszawa
  • Ostasiewicz S., Rusnak Z., Siedlecka U.,(1997), Statystyka elementy teorii i zadania, Wydawnictwo Akademii Ekonomicznej, Wrocław
  • Woźniak M., (2002), Statystyka ogólna, Wydawnictwo Akademii Ekonomicznej w Krakowie, Kraków
  • Zeliaś A., Pawełek B., Wanat S., (2002), Metody statystyczne. Zadania i sprawdziany, Polskie Wydawnictwo Ekonomiczne, Warszawa

Autor: Łukasz Michta