Dominanta
Dominanta |
---|
Polecane artykuły |
Dominanta zwana też modalną, modą lub wartością najczęstszą jest to taka wartość zmiennej, która w danym rozkładzie empirycznym występuje najczęściej. Należy do miar położenia.
Jeżeli nie ma takiej wartości, tzn. jeśli wartość występuje kilkukrotnie to dominanta nie istnieje. Dla danych przedstawionych w postaci szeregu punktowego dominantę wskazuje się natychmiast - wskazuje ją punkt najliczniejszy. Przy danych pogrupowanych w szereg rozdzielczy nie wystarczy odszukać przedziału najliczniejszego, należy wskazać punkt dominantowy - konkretny punkt w tym przedziale. Dominantę można policzyć z wzoru lub przedstawić ją graficznie za pomocą histogramu - w obu przypadkach wynik będzie ten sam. Dominanta stosowana jest do rozkładów asymetrycznych. (Stanisławek J. 2010, s. 50-52)
Dominanta nazywana jest modalną, wartością najczęstszą. To taka wartość zmienna, która w danym rozkładzie empirycznym występuje najczęściej. Reasumując, dominantę można wyznaczyć tylko w rozkładach jednomodalnych. Badając dominantę w szeregach szczegółowych i rozdzielczych punktowych modalna jest cechą, która występuje najliczniej. W szeregach rozdzielczych przedziałowych można bezpośrednio wyznaczyć przedział w którym występuje dominanta i również jest to przedział występujący najliczniej. (Parlińska M., Parliński J. 2011, s. 41)
Dominantę oznacza się za pomocą symboli lub . Dominanta to wartość powtarzająca się najczęściej w całej zbiorowości lub próbie. W szeregach szczegółowych oraz rozdzielczych punktowych dominanta jest wartością zmiennej, której odpowiada największa liczebność (częstość) i wystarczy tylko ją wskazać. Dominanty nie wyznacza się z szeregów bimodalnych lub wielomodalnych ponieważ przedstawiają one zbiorowości niejednorodne ze względu na badana zmienną.
Wzór i objaśnienie
W szeregach z przedziałami klasowymi można określić przedział, w którym występuje dominanta (przedział ten charakteryzuje się największą liczebnością), a przybliżoną wartość dominanty można wyznaczyć z histogramu liczebności lub wzoru:
- dolna granica przedziału klasowego, który zawiera dominantę (przedział charakteryzuje się największa częstością)
- częstość (absolutna lub względna) przedziału klasowego domkniętego zawierającego dominantę (o maksimum częstości w rozkładzie)
- częstość (absolutna lub względna) przedziału klasowego poprzedzającego przedział zawierający dominantę
- częstość (absolutna lub względna) przedziału klasowego następującego po przedziale zawierający dominantę
- rozpiętość przedziału dominanty (przedziały sąsiadujące muszą mieć taką samą rozpiętość)
Dominanta należy do przeciętnych miar (położenia), które to charakteryzują zbiorowość statystyczną niezależnie od różnic występujących między poszczególnymi jednostkami wchodzącymi w jej skład. Charakteryzują podobieństwa zbiorowości ze względu na wyróżnioną zmienną cechę. (Zimny A. 2010, s. 22)
Warunki wyznaczania
Dominantę wyznacza się, gdy spełnione są następujące warunki:
- występuje wystarczająco dużo obserwacji,
- rozkład empiryczny liczebności jest rozkładem jendomodalnym,
- asymetria rozkładu liczebności jest umiarkowana,
- przedziały klasowe, w których występuje dominanta oraz dwa sąsiednie maja jednakową długość.
Uwagi dotyczące wyznaczania dominanty:
- można ją wyznaczyć w szeregach rozdzielczych otwartych (szereg nie jest zamknięty od góry i od dołu),
- na jej wartość nie maja wpływu wartości skrajne szeregu, w szeregu symetrycznym dominanta jest równa średniej arytmetycznej,
- dominanta charakteryzuje jednostki statystyczne o typowym poziomie zmiennej, a nie wszystkie badane jednostki.
Jak każda miara, domianata posiada wady i zalety. Do zalet można zaliczyć:
- łatwość znalezienia,
- nie wpływają na nią wyniki odskakujące,
- możemy ją wyznaczyć dla cech niemierzalnych.
Wady z kolei to:
- pomijana jest większość zawartych informacji
- nie jest zdefiniowana algebraicznie,
- nie zawsze da się ją znaleźć- nie zawsze istnieje. (Stanisławek J. 2010, s. 50-52)
Bibliografia
- Parlińska M., Parliński J. (2011), ‘’Statystyczna analiza danych z Excelem’’, SGGW, Warszawa
- Stanisławek J. (2010), Podstawy statystyki, Oficyna Wydawnicza Politechnika Warszawska, Warszawa
- Starzyńska W. (2002), Statystyka praktyczna, PWN, Warszawa
- Zeliaś A. (2000), Metody statystyczne, PWE, Warszawa
- Zimny A. (2010), Statystyka opisowa Państwowa Wyższa Szkoła Zawodowa w Koninie, Konin
Autor: Kinga Rocławska, Ewa Wójcik