Błąd względny: Różnice pomiędzy wersjami
m (Czyszczenie tekstu) |
m (cleanup bibliografii i rotten links) |
||
(Nie pokazano 10 wersji utworzonych przez 2 użytkowników) | |||
Linia 1: | Linia 1: | ||
'''[[Błąd]] względny''' to stosunek [[błąd bezwzględny|błędu bezwzględnego]] do wyniku [[pomiar|pomiaru]] (L. Czopek 1994, s. 172). Jest on wielkością mianowaną. | '''[[Błąd]] względny''' to stosunek [[błąd bezwzględny|błędu bezwzględnego]] do wyniku [[pomiar|pomiaru]] (L. Czopek 1994, s. 172). Jest on wielkością mianowaną. | ||
Linia 29: | Linia 14: | ||
: '''Δx''' - błąd bezwzględny | : '''Δx''' - błąd bezwzględny | ||
: '''x<sub>0</sub>'''- [[wynik]] pomiaru. | : '''x<sub>0</sub>'''- [[wynik]] pomiaru. | ||
Wyznaczona wartość błędu procentowego jest sama w sobie nie wartościowa, dlatego aby uzyskać pełną informację o wartości dokonanego pomiaru podaje się łącznie: wynik pomiaru i błąd procentowy (H. Szydłowski 1973, s. 41). | Wyznaczona wartość błędu procentowego jest sama w sobie nie wartościowa, dlatego aby uzyskać pełną informację o wartości dokonanego pomiaru podaje się łącznie: wynik pomiaru i błąd procentowy (H. Szydłowski 1973, s. 41). | ||
Linia 35: | Linia 19: | ||
==TL;DR== | ==TL;DR== | ||
Błąd względny to stosunek błędu bezwzględnego do wyniku pomiaru, zwykle wyrażany w procentach. Jest używany w różnych dziedzinach, takich jak matematyka, ekonomia, metrologia i geodezja. Błąd względny pozwala ocenić jakość pomiaru i estymację. W geodezji błąd względny jest używany do opisania błędów pomiarów związanych z niedoskonałościami przyrządów i innych czynników. Różnica między błędem względnym a błędem bezwzględnym polega na wartościowości wyniku pomiaru. | Błąd względny to stosunek błędu bezwzględnego do wyniku pomiaru, zwykle wyrażany w procentach. Jest używany w różnych dziedzinach, takich jak matematyka, ekonomia, metrologia i geodezja. Błąd względny pozwala ocenić jakość pomiaru i estymację. W geodezji błąd względny jest używany do opisania błędów pomiarów związanych z niedoskonałościami przyrządów i innych czynników. Różnica między błędem względnym a błędem bezwzględnym polega na wartościowości wyniku pomiaru. | ||
<google>n</google> | |||
==Błąd względny w matematyce== | ==Błąd względny w matematyce== | ||
Linia 136: | Linia 122: | ||
ɛ= L<sub>o</sub>-X | ɛ= L<sub>o</sub>-X | ||
* błąd pozorny spostrzeżenia "- | * błąd pozorny spostrzeżenia "-v" to różnica wartości zmierzonej i wartości wyrównanej spostrzeżenia L<sub>w</sub> | ||
* v = L<sub>w</sub> - L<sub>o</sub> | * v = L<sub>w</sub> - L<sub>o</sub> | ||
Linia 147: | Linia 133: | ||
<center><math> m= \sqrt{\frac{\epsilon \epsilon}{n}} </math></center> | <center><math> m= \sqrt{\frac{\epsilon \epsilon}{n}} </math></center> | ||
gdzie " | gdzie "n" - liczba błędów prawdziwych = liczba spostrzeżeń. | ||
Niemniej jednak, ten wzór jest rzadko stosowany, ponieważ rzadko kiedy istnieje możliwość określenia błędów prawdziwych. W związku z tym, średni błąd spostrzeżenia obliczany jest na podstawie błędów pozornych | Niemniej jednak, ten wzór jest rzadko stosowany, ponieważ rzadko kiedy istnieje możliwość określenia błędów prawdziwych. W związku z tym, średni błąd spostrzeżenia obliczany jest na podstawie błędów pozornych | ||
Linia 166: | Linia 152: | ||
==Różnica między błędem względnym a błędem bezwzględnym== | ==Różnica między błędem względnym a błędem bezwzględnym== | ||
Podstawowym czynnikiem różnicującym błąd względny od błędu bezwzględnego jest wartościowość uzyskanego wyniku. Błąd względny w przeciwieństwie do błędu bezwzględnego pozwala na zinterpretowanie badanego zjawiska, określa jego [[jakość]] (Fiałkowska M. 2009, s. 338-339). | Podstawowym czynnikiem różnicującym błąd względny od błędu bezwzględnego jest wartościowość uzyskanego wyniku. Błąd względny w przeciwieństwie do błędu bezwzględnego pozwala na zinterpretowanie badanego zjawiska, określa jego [[jakość]] (Fiałkowska M. 2009, s. 338-339). | ||
{{infobox5|list1={{i5link|a=[[Błąd bezwzględny]]}} — {{i5link|a=[[Współczynnik determinacji]]}} — {{i5link|a=[[Skala interwałowa]]}} — {{i5link|a=[[Saldo migracji]]}} — {{i5link|a=[[Krzywa wzorcowa]]}} — {{i5link|a=[[ANOVA]]}} — {{i5link|a=[[Poziom istotności]]}} — {{i5link|a=[[Analiza regresji]]}} — {{i5link|a=[[Średnia geometryczna]]}} }} | |||
==Bibliografia== | ==Bibliografia== | ||
<noautolinks> | <noautolinks> | ||
* Babiański W. (2009) ''Matematyka 1. Podręcznik dla liceum ogólnokształcącego, liceum profilowanego i technikum.'' Nowa Era, Warszawa | * Babiański W. (2009), ''Matematyka 1. Podręcznik dla liceum ogólnokształcącego, liceum profilowanego i technikum.'' Nowa Era, Warszawa | ||
* Burnos P. (2010) ''Laboratorium metrologii AGH. Analiza błędów i niepewności wyników pomiarowych | * Burnos P. (2010), ''Laboratorium metrologii AGH. Analiza błędów i niepewności wyników pomiarowych'', AGH, Kraków | ||
* Fiałkowska M., Fiałkowski K., Saganowska B. (2009), ''Fizyka dla szkół ponadgimnazjalnych'', ZamKor, Kraków | |||
* Fiałkowska M., Fiałkowski K., Saganowska B. (2009) ''Fizyka dla szkół ponadgimnazjalnych | * Fogra (1995), ''Popularna Encyklopedia Powszechna'', Wydawnictwo Oficyna Wydawnicza Fogra, Kraków | ||
* Leszczyński Z., Skowronek-Mielczarek A. (2000) ''Analiza ekonomiczno - finansowa firmy.'' | * Leszczyński Z., Skowronek-Mielczarek A. (2000), ''Analiza ekonomiczno - finansowa firmy.'' Difin, Warszawa | ||
* Szydłowski H. (1973) '' | * Szydłowski H. (1973), ''Pracownia fizyczna'', PWN, Warszawa | ||
* Wiatr L. (2007) ''Wykorzystywanie teorii błędów do opracowywania pomiarów geodezyjnych 311.10.Z1.07. Poradnik dla ucznia.'' Instytut Technologii Eksploatacji - Państwowy Instytut Badawczy, Radom | * Wiatr L. (2007), ''Wykorzystywanie teorii błędów do opracowywania pomiarów geodezyjnych 311.10.Z1.07. Poradnik dla ucznia.'' Instytut Technologii Eksploatacji - Państwowy Instytut Badawczy, Radom | ||
</noautolinks> | </noautolinks> | ||
[[Kategoria: | [[Kategoria:Miary statystyczne]] | ||
{{a|Katarzyna Kolano}} | {{a|Katarzyna Kolano}} | ||
{{#metamaster:description|Błąd względny to stosunek błędu bezwzględnego do wyniku pomiaru. Dowiedz się więcej o tej wielkości i jej wykorzystaniu w pomiarach.}} | {{#metamaster:description|Błąd względny to stosunek błędu bezwzględnego do wyniku pomiaru. Dowiedz się więcej o tej wielkości i jej wykorzystaniu w pomiarach.}} |
Aktualna wersja na dzień 21:50, 6 gru 2023
Błąd względny to stosunek błędu bezwzględnego do wyniku pomiaru (L. Czopek 1994, s. 172). Jest on wielkością mianowaną.
gdzie:
- x0 - wartość mierzona,
- Δx - błąd bezwzględny.
Błąd względny najczęściej jednak wyrażony jest w procentach, wtedy nazywany jest błędem procentowym (H. Szydłowski 1973, s. 41).
gdzie:
- ð - błąd procentowy
- Δx - błąd bezwzględny
- x0- wynik pomiaru.
Wyznaczona wartość błędu procentowego jest sama w sobie nie wartościowa, dlatego aby uzyskać pełną informację o wartości dokonanego pomiaru podaje się łącznie: wynik pomiaru i błąd procentowy (H. Szydłowski 1973, s. 41).
TL;DR
Błąd względny to stosunek błędu bezwzględnego do wyniku pomiaru, zwykle wyrażany w procentach. Jest używany w różnych dziedzinach, takich jak matematyka, ekonomia, metrologia i geodezja. Błąd względny pozwala ocenić jakość pomiaru i estymację. W geodezji błąd względny jest używany do opisania błędów pomiarów związanych z niedoskonałościami przyrządów i innych czynników. Różnica między błędem względnym a błędem bezwzględnym polega na wartościowości wyniku pomiaru.
Błąd względny w matematyce
"Niech a będzie przybliżeniem liczby x.(...) Stosunek błędu bezwzględnego do wartości bezwzględnej liczby x nazywamy błędem względnym:
Błąd względny często wyrażany jest w procentach" (W. Babiański 2009, s. 78).
Przykład 1.
Państwo Kowalscy zaplanowali remont mieszkania, na który przeznaczyć chcieli 10 000 zł, z kolei na zakup nowego telewizora zamierzali wydać 1100 zł. W rzeczywistości jednak remont mieszkania wyniósł 10300 zł, a nowy telewizor kosztował 1400 zł. W obu wypadkach, pomyli się w szacowaniu kosztów o 300 zł (błąd bezwzględny). Podaj w procentach błąd względny, popełniony przy estymacji wydatków.
Rozwiązanie:
Remont mieszkania
x - 10300 zł rzeczywista wartość
Δx= 300 zł błąd bezwzględny
Nowy telewizor
x - 10300 zł rzeczywista wartość
Δx= 300 zł błąd bezwzględny
Błąd względny w ekonomii
W celu wstępnej analizy odchyleń kosztów rzeczywistych w stosunku do przyjętej bazy odniesienia, jako jednego z elementów analizy ekonomiczno - finansowej firmy, wykorzystuje się odchylenia. Dzielą się one na odchylenia bezwzględne i względne.
Odchylenie względne (ΔKw) można wyznaczyć za pomocą wzoru:
gdzie:
- ΔKw - odchylenie względne,
- K1 - koszty okresu badanego,
- K0 - koszty okresu bazowego,
- P1 - przychody okresu badanego,
- P0 - przychody okresu bazowego.
Względne odchylenie kosztów daje możliwość oceny wpływu na koszty zmian rozmiarów działalności gospodarczej (produkcji, sprzedaży, przychodów). Może przyjmować wartości zarówno dodatnie jak i ujemne. Dodatni wynik informuje o względnym wzroście kosztów, ujemny natomiast o względnej obniżce kosztów (Z. Leszczyński 2000, s. 238).
Błąd względny w metrologii
Wszystkie przyrządy pomiarowe charakteryzują się ograniczoną dokładnością materiałową, wynikającą z właściwości materiałów wykorzystanych do ich budowy. Dokładność tych przyrządów opisywana jest za pomocą błędu granicznego, który wyznacza największą wartość błędu wskazania, mogącą wystąpić w dowolnym punkcie zakresu pomiarowego przyrządu w przypadku jego poprawnego użytkowania w warunkach odniesienia. Najważniejszymi parametrami dotyczącymi warunków odniesienia są: temperatura, ciśnienie, wilgotność, brak wstrząsów, wibracji i innych zakłóceń (np. elektromagnetycznych) (P. Burnos 2010, s. 4-5).
Błąd pomiaru przyrządem analogowym zależny od jego klasy dokładności (K) oraz zakresu pomiarowego (Z). Względny błąd graniczny można wyznaczyć za pomocą wzoru:
gdzie:
- ΔX - wartość bezwzględnego błędu pomiarowego,
- x - wynik pomiaru,
- ðgr - względny błąd graniczny
Wiedząc, że błąd bezwzględny ΔX opisany jest za pomocą wzoru:
gdzie:
- K - klasa narzędzia pomiarowego,
- Z- zakres narzędzia pomiarowego,
po podstawieniu otrzymujemy:
Mając na uwadze, że wartość bezwzględnego błędu granicznego jest stała, względny błąd graniczny, będący stosunkiem bezwzględnego błędu granicznego do wartości mierzonej x, maleje wraz ze wzrostem tej wartości. Z tejże przyczyny zakres przyrządu musi być dobrany w taki sposób, żeby wychylenie wskazówki znajdowało się w części podziałki powyżej ½ zakresu (P. Burnos 2010, s. 4-5).
Przykład 2.
Woltomierzem o zakresie pomiarowym 150V i klasie dokładności 0,2 zmierzono napięcie na rezystorze, które wyniosło 120V. Obliczyć błąd względny pomiaru.
Rozwiązanie:
Z - 150 V
K - 0,2
X - 120 V
Zatem błąd względny pomiaru wynosi 25%.
Błąd względny w geodezji
W geodezji wyniki pomiarów, zwane także obserwacjami, lub spostrzeżeniami (oznaczane L1, L2,...Ln) zawsze obarczone są błędami, które wynikać mogą z niedoskonałości przyrządów pomiarowych, zmysłów obserwatora czy też zmienności warunków środowiskowych i atmosferycznych w czasie dokonywania pomiaru. Z tego też powody, wielkości tych pomiarów są jedynie wartościami przybliżonymi do wartości prawdziwych wielkości mierzonych (nieznanych). Ze względu na źródła występowania rozróżnia się trzy grupy błędów:
- błędy grube,
- błędy systematyczne,
- błędy losowe.
Inną typologią błędów jest:
- błąd prawdziwy \epsilon, czyli różnica wartości zmierzonej Lo i wartości prawdziwej spostrzeżenia X
ɛ= Lo-X
- błąd pozorny spostrzeżenia "-v" to różnica wartości zmierzonej i wartości wyrównanej spostrzeżenia Lw
- v = Lw - Lo
Z kolei błędy charakteryzujące dokładność obserwacji to:
- błąd absolutny ma przypadający na całą nieznaną wielkość,
- błąd względny mw przypadający na jednostkę mierzonej wielkości, czyli stosunek błędu absolutnego do mierzonej wielkości d. Błąd ten wyrażony jest za pomocą wzoru:
- błąd średni pojedynczego spostrzeżenia m, obliczony na podstawie błędów prawdziwych
gdzie "n" - liczba błędów prawdziwych = liczba spostrzeżeń. Niemniej jednak, ten wzór jest rzadko stosowany, ponieważ rzadko kiedy istnieje możliwość określenia błędów prawdziwych. W związku z tym, średni błąd spostrzeżenia obliczany jest na podstawie błędów pozornych
- błąd graniczny g - wyznacza maksymalną wartość błędu dopuszczalnego dla danego pomiaru i przyjmowany jest zwykle, jako trzykrotna wartość błędu średniego, czyli g = 3 m
W praktyce przyjmuje się jednak, że g znajduje się w przedziale: 2 m ≤ g ≤ 3 m (L. Wiatr 2007, s. 7-9).
Przykład 3.
Zmierzono długość L=300 m ze średnim błędem m = ±3 cm. Oblicz błąd względny tej długości (L. Wiatr 2007, s. 11).
Różnica między błędem względnym a błędem bezwzględnym
Podstawowym czynnikiem różnicującym błąd względny od błędu bezwzględnego jest wartościowość uzyskanego wyniku. Błąd względny w przeciwieństwie do błędu bezwzględnego pozwala na zinterpretowanie badanego zjawiska, określa jego jakość (Fiałkowska M. 2009, s. 338-339).
Błąd względny — artykuły polecane |
Błąd bezwzględny — Współczynnik determinacji — Skala interwałowa — Saldo migracji — Krzywa wzorcowa — ANOVA — Poziom istotności — Analiza regresji — Średnia geometryczna |
Bibliografia
- Babiański W. (2009), Matematyka 1. Podręcznik dla liceum ogólnokształcącego, liceum profilowanego i technikum. Nowa Era, Warszawa
- Burnos P. (2010), Laboratorium metrologii AGH. Analiza błędów i niepewności wyników pomiarowych, AGH, Kraków
- Fiałkowska M., Fiałkowski K., Saganowska B. (2009), Fizyka dla szkół ponadgimnazjalnych, ZamKor, Kraków
- Fogra (1995), Popularna Encyklopedia Powszechna, Wydawnictwo Oficyna Wydawnicza Fogra, Kraków
- Leszczyński Z., Skowronek-Mielczarek A. (2000), Analiza ekonomiczno - finansowa firmy. Difin, Warszawa
- Szydłowski H. (1973), Pracownia fizyczna, PWN, Warszawa
- Wiatr L. (2007), Wykorzystywanie teorii błędów do opracowywania pomiarów geodezyjnych 311.10.Z1.07. Poradnik dla ucznia. Instytut Technologii Eksploatacji - Państwowy Instytut Badawczy, Radom
Autor: Katarzyna Kolano