Współczynnik determinacji

Z Encyklopedia Zarządzania
Współczynnik determinacji
Polecane artykuły


Współczynnik determinacji informuje o tym, jak część zmian zmiennej objaśnianej jest wyjaśniona przez zmiany zmiennej objaśniającej (D. Chudy - Hyski 2006, s. 138). Inaczej mówiąc, pokazuje jaki procent zmiennej zależnej (objaśnianej) jest wyjaśniany za pomocą zmiennej niezależnej (czynnik zmienna objaśniająca). Głównie można się z nim spotkać w statystyce i ekonometrii. Oznaczany jest jako \( R^2 \,\). Można go przedstawić za pomocą poniższego wzoru\[ R^2 = \frac{ \sum_{t=1}^n (\hat y_t \ - \bar y \)^2 }{ \sum_{t=1}^n (y_t - \bar y \)^2 }\]

gdzie:
\( R^2 \,\) - współczynnik determinacji
\( y_t \,\) - rzeczywista wartość zmiennej zależnej
\( \hat y_t \,\) - przewidywana wartość zmiennej zależnej
\( \bar y \,\) - średnia wartość rzeczywistej zmiennej zależnej

Wartość współczynnika determinacji

"Współczynnik determinacji przyjmuje wartości z przedziału [0, 1] oraz udowadnia, że im większa jest wyjaśniona modelem zmienność zmiennej objaśnianej tym bliższa jedności jest wartość współczynnika \( R^2 \,\)" (B. Borkowski, H. Dudek, W. Szczesny 2007, s. 43). Wynika z tego fakt, iż im wyższe będzie \( R^2 \,\) tym dokładniejsze będą nasze prognozy. Wartości współczynnika opisują w swojej książce Amir D. Aczel i Jayavel Sounderpandian, pisząc: "Wartość \( R^2 \,\) powyżej 0,9 można uważać za bardzo dobrą, powyżej 0,8 - za dobrą, a powyżej 0,6 - za zadowalającą w niektórych zastosowaniach, choć w tym ostatnim przypadku musimy liczyć się ze stosunkowo dużymi błędami prognozy; Gdy \( R^2 \,\) jest poniżej 0,5, to regresja wyjaśnia tylko mniej niż 50% zmienności Y; prognozy mogą okazać się nietrafne; Jeżeli chcemy tylko zrozumieć związki między zmiennymi, to niższe wartości \( R^2 \,\) są do przyjęcia, ale musimy zdawać sobie sprawę, że model regresji niewiele wtedy wyjaśnia" (A. D. Aczel, J. Sounderpandian 2018, s. 637 - 638). Z kolei "im większa będzie liczba zmiennych objaśniających tym nie mniejsza będzie wartość współczynnika determinacji" (A. Nowak - Brzezińska 2018, s. 97). Jednak nie można jedynie za pomocą tego współczynnika określić jakości modelu, ponieważ jest on jedynie jedną z kilku miar jakości modelu, stąd też należy przy badaniu wziąć też pod uwagę inne czynniki. Opisane zostało to w książce pod redakcją m.in. M. Gruszczyńskiego "Należy pamiętać, że współczynnik \( R^2 \,\) stanowi wewnątrzpróbowe kryterium oceny dopasowania modelu; Jego konstrukcja uwzględnia jedynie te obserwacje, które należą do próby, a zatem nie daje informacji o wartości prognostycznej modelu" (M. Gruszczyński, T. Kuszewski, M. Podgórska 2009, s. 52).

Efekt katalizy

Omawiany współczynnik ze względu na zmienność jego wartości przez ilość i związek między badanymi zmiennymi doprowadza czasem do pewnych zjawisk. Jednym z nich jest najczęściej omawiany w polskich literaturach efekt katalizy. Co to takiego? Jest to efekt dający możliwość otrzymania wysokiej wartości współczynnika determinacji mimo że charakter i siła powiązań zmiennych objaśniających i zmiennej objaśnianej nie uzasadniają takiego wyniku. Efekt katalizy może wystąpić tam, gdzie występuje zmienna, czyli katalizator .

Zastosowanie \( R^2 \,\)

Współczynnik determinacji wykorzystywany jest przy analizach:

  • daje nam informację, na ile nasze badanie (nasz założony czynnik) wyjaśnia to co chcemy mierzyć
  • służy określeniu, na ile poszczególne modele statystyczne, czynniki "dobrze" wyjaśniają to co chcemy wyjaśnić, która ze zmiennych (jeżeli badamy w badaniu kilka) lepiej wyjaśnia zmienną zależną
  • jest miarą najczęściej stosowaną w modelu statystycznym czy ekonometrycznym niż w zwykłej analizie korelacji
  • pozwala oszacować, który z analizowanych modeli jest lepszy

Skoro używa się tej miary przy analizie statystycznej, to można ją wykorzystać wykonując statystyki w różnych dziedzinach nauki. Chociażby w medycynie. Ciekawym przypadkiem jest dokonanie takiej analizy przy badaniu poziomu lęku a natężeniem depresji w okresie przedoperacyjnym i po zabiegu rewaskularyzacji mięśnia sercowego. Na podstawie badania stwierdzono, m.in. dzięki współczynnikowi \( R^2 \,\), jakie natężenie i czy istnieje związek między lękiem a depresją przed i po zabiegu (A. Pawlak i wsp. 2012, s. 63-74).

Bibliografia

Autor: Patrycja Rygiel