Prawo wielkich liczb
Prawo wielkich liczb - seria twierdzeń matematycznych opisujących związek między liczbą wykonywanych doświadczeń a faktycznym prawdopodobieństwem wystąpienia zdarzenia, którego te doświadczenia dotyczą.
Prawa Bernoulliego
W książce Wstęp do rachunku prawdopodobieństwa [1] autorzy przedstawiają prawa Bernoulliego w następujący sposób:
- Prawo wielkich liczb Bernoulliego
Niech Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle S_{n} } oznacza liczbę sukcesów w schemacie Bernoulliego Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle n } prób, gdzie prawdopodobieństwo sukcesu w pojedynczej próbie jest równe , to dla każdego .
- Mocne prawo wielkich liczb Bernoulliego
Jeśli oznacza liczbę sukcesów w schemacie Bernoulliego prób, a prawdopodobieństwo sukcesu w pojedynczej próbie jest równe . Wtedy -prawie wszędzie , gdy . Prawa te pod koniec XVII wieku udowodnił Jakub Bernoulli.
Prawa Markowa
Do sformułowania prawa wielkich liczb Markowa używamy następujących definicji i twierdzeń [2]:
- mówimy, że ciąg zmiennych losowych jest zbieżny do według prawdopodobieństwa, gdy dla każdego zachodzi:
- mówimy, że ciąg zmiennych losowych jest zbieżny do z prawdopodobieństwem jeden (prawie na pewno), gdy:
- Ciąg zmiennych losowych spełnia słabe prawo wielkich liczb, gdy istnieje stała taka, że według prawdopodobieństwa:
- Ciąg zmiennych losowych spełnia mocne prawo wielkich liczb, gdy istnieje stała taka, że:
Chińczyn, Kołmogorow, Etemadi
MPWL, czyli mocne prawo wielkich Chińczyna, Kołmogrowa, Etemida [3][4]:
- Ciąg oznaczmy jako ciąg niezależnych zmiennych losowych, które mają ten sam rozkład. Jeżeli to:
- To twierdzenie ma również odwrotną formę. Z tego, że Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle P(\limsup_n {\frac {|X_{1} + X_{2} + \dots + X_{n}|}{n}} < +\infty) > 0 } wynika: Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle E|X| < + \infty \textit{ i srednie sa zbiezne prawie wszedzie do } EX_{1}. }
Zastosowanie prawa wielkich liczb
Prawa wielkich liczb znajdują zastosowanie w wielu dziedzinach nauki, oto kilka z nich [5]:
- metoda Monte Carlo obliczania całek. Jest ona szczególnie przydatna do obliczania całek wielokrotnych (w analizie matematycznej), rozwiązywania równań różniczkowych i całkowych. Stanisław Ulam użył tej metody do obliczeń związanych z bombą atomową.
- wyliczanie dystrybuanty empirycznej.
- dowodzenie twierdzeń dotyczących teorii liczb.
- w statystyce. Zgodnie z prawem wielkich liczb wnioski o konkretnej grupie można wyciągnąć tylko na podstawie odpowiednio dużej próby. Im próba jest większa tym bardziej wynik powinien zbliżać się do wartości przeciętnej.
Przypisy
Prawo wielkich liczb — artykuły polecane |
Błąd bezwzględny — Błąd względny — Współczynnik determinacji — ANOVA — Wariancja składnika resztowego — Estymator — Regresja liniowa — Dominanta — Rozkład normalny |
Bibliografia
- Feller W. (2008), Wstęp do rachunku prawdopodobieństwa, Wydawnictwo Naukowe PWN, Warszawa
- Hand D. (2014), Zasada nieprawdopodobieństwa. Dlaczego codziennie zdarzają się cuda, zbiegi okoliczności, rzadkie wydarzenia, Grupa Wydawnicza Foksal, Warszawa
- Jakubowski A. (2011), Statystyka i eksploracja danych Repetytorium z teorii prawdopodobieństwa, Wydawca: UMK Toruń, Toruń
- Jakubowski J. (2010), Wstęp do teorii prawdopodobieństwa, Wydawnictwo Script, Warszawa
- Krysicki W., Bartos J., Dyczka W., Królikowska K., Wasielewski M. (1999), Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach, Wydawnictwo Naukowe PWN, Warszawa
- Nawrocki J., Winnicki A., (2010), Matematyka cz.5 Elementy probabilistyki i statystyki matematycznej, Politechnika Warszawska, Warszawa
- Seneta E., (2006), A Tricentenary history of the Law of Large Numbers, School of Mathematics and Statistics, University of Sydney, Australia
Autor: Mariola Klaś