Błąd z próby: Różnice pomiędzy wersjami
m (Infobox5 upgrade) |
m (Pozycjonowanie) |
||
Linia 8: | Linia 8: | ||
Według E. Babbie, jest to poziom błędu, który jest oczekiwany dla danego rodzaju próby. Na oszacowania tego błędu, pozwala '''[[rachunek]] prawdopodobieństwa'''. | Według E. Babbie, jest to poziom błędu, który jest oczekiwany dla danego rodzaju próby. Na oszacowania tego błędu, pozwala '''[[rachunek]] prawdopodobieństwa'''. | ||
Błąd z próby jest istotnym czynnikiem, który może wpłynąć na reprezentatywność i dokładność wyników badania. W przypadku, gdy próba badawcza nie jest reprezentatywna dla populacji, wyniki mogą być błędne i nieodpowiednie do wyciągania szerokich wniosków. Niedoszacowanie lub przeszacowanie błędu z próby może znacząco wpłynąć na interpretację wyników, co może prowadzić do nieprawidłowych decyzji. | Błąd z próby jest istotnym czynnikiem, który może wpłynąć na reprezentatywność i dokładność wyników badania. W przypadku, gdy próba badawcza nie jest reprezentatywna dla populacji, wyniki mogą być błędne i nieodpowiednie do wyciągania szerokich wniosków. Niedoszacowanie lub przeszacowanie błędu z próby może znacząco wpłynąć na interpretację wyników, co może prowadzić do nieprawidłowych decyzji. | ||
Niedoszacowanie lub przeszacowanie błędu z próby może mieć poważne konsekwencje dla interpretacji wyników badania. Jeśli błąd z próby jest niedoszacowany, może to prowadzić do przeceniania pewnych cech populacji, co z kolei może prowadzić do podejmowania błędnych decyzji. Z drugiej strony, jeśli błąd z próby jest przeszacowany, wyniki mogą być zaniżone, co może prowadzić do niepełnego zrozumienia badanej populacji. | Niedoszacowanie lub przeszacowanie błędu z próby może mieć poważne konsekwencje dla interpretacji wyników badania. Jeśli błąd z próby jest niedoszacowany, może to prowadzić do przeceniania pewnych cech populacji, co z kolei może prowadzić do podejmowania błędnych decyzji. Z drugiej strony, jeśli błąd z próby jest przeszacowany, wyniki mogą być zaniżone, co może prowadzić do niepełnego zrozumienia badanej populacji. | ||
<google>n</google> | |||
==Wzór== | ==Wzór== |
Wersja z 17:52, 18 lis 2023
Błąd z próby - inaczej zwany błędem losowym. Najczęściej przyjmowane jest, że jest on jedynym źródłem błędów przy podawaniu ocen z badania reprezentacyjnego. Taki błąd można prezentować na kilka sposobów, np. jako:
- błąd standardowy,
- błąd bezwzględny
- błąd względny standardowy,
- przedział ufności.
Warto zaznaczyć, iż w niektórych publikacjach Głównego Urzędu Statystycznego (GUS), ale również w innych urzędach statystycznych krajów Unii Europejskiej, podaje się tylko ocenę względnego błędu standardowego dla kilku parametrów, bez żadnej interpretacji. Co więcej - oceny są podawane dla całego kraju, a potem dane przedstawia się dla poszczególnych województw i w innych przekrojach. Dla użytkowników taka informacja może być niejasna i wprowadzić ich w błąd[1]
Według E. Babbie, jest to poziom błędu, który jest oczekiwany dla danego rodzaju próby. Na oszacowania tego błędu, pozwala rachunek prawdopodobieństwa.
Błąd z próby jest istotnym czynnikiem, który może wpłynąć na reprezentatywność i dokładność wyników badania. W przypadku, gdy próba badawcza nie jest reprezentatywna dla populacji, wyniki mogą być błędne i nieodpowiednie do wyciągania szerokich wniosków. Niedoszacowanie lub przeszacowanie błędu z próby może znacząco wpłynąć na interpretację wyników, co może prowadzić do nieprawidłowych decyzji.
Niedoszacowanie lub przeszacowanie błędu z próby może mieć poważne konsekwencje dla interpretacji wyników badania. Jeśli błąd z próby jest niedoszacowany, może to prowadzić do przeceniania pewnych cech populacji, co z kolei może prowadzić do podejmowania błędnych decyzji. Z drugiej strony, jeśli błąd z próby jest przeszacowany, wyniki mogą być zaniżone, co może prowadzić do niepełnego zrozumienia badanej populacji.
Wzór
Wzór ten zawiera trzy składowe: parametr, wielkość próby oraz błąd standardowy.
Symbol P oraz symbol Q to odpowiedniki parametrów populacji w rozkładzie dwuwartościowym.
Przykład:
Jeżeli 60% wszystkich studentów akceptuje kodeks, a 40% go nie akceptuje, to P oraz Q wynoszą odpowiednio 60% oraz 40% (lub 0,6 i 0,4). Dlatego też Q= 1-P, a P= 1-Q.
"n" symbolizuje liczbę przypadków w każdej próbie, a "s" jest równy błędowi standardowemu.
Przykład:
Losujemy z próby po 100 przypadków każda. Jest to zbiorowość studentów i 50% z nich akceptuje kodeks i 50% nie. Po podstawieniu liczb do wzoru, uzyskujemy błąd standardowy w wysokości 0,05, czyli 5%.
Wszystko to ilustruje tylko logikę probabilistycznego doboru próby, a nie opisuje jak faktycznie prowadzi się badania. Często nieznana jest wartość parametru (do tego jest sondaż na próbie). W rzeczywistości nie pobiera się również dużych ilości prób, a tylko jedną. Mimo to, rachunek prawdopodobieństwa daje podstawę do konkluzji odnoszącej się do typowych sytuacji w badaniach socjologicznych[2]
Metody szacowania błędu z próby
Metoda bootstrap jest jedną z metod szacowania błędu z próby. Polega ona na generowaniu wielu losowych prób ze zbioru danych i obliczaniu estymatorów na tych próbach. Następnie, na podstawie rozkładu uzyskanych estymatorów, można obliczyć błąd z próby. Metoda bootstrap jest szczególnie przydatna w przypadku, gdy nie można bezpośrednio obliczyć błędu z próby na podstawie teoretycznych wzorów.
Metoda szeregów czasowych jest metodą szacowania błędu z próby w badaniach longitudinalnych. Polega ona na porównaniu wyników badania w różnych okresach czasu i obliczeniu różnicy pomiędzy nimi. Na podstawie tych różnic można szacować błąd z próby. Metoda ta jest szczególnie przydatna w przypadku, gdy istnieje zmienność wyników w czasie.
Metody szacowania błędu z próby znajdują zastosowanie w różnych typach badań. Na przykład, w badaniach epidemiologicznych, metoda bootstrap może być stosowana do szacowania błędu z próby w celu oceny skuteczności interwencji zdrowotnych. W badaniach ekonomicznych, metoda jackknife może być wykorzystywana do szacowania błędu z próby w celu oceny wpływu polityk publicznych. Analiza uzyskanych błędów z próby może dostarczyć cennych informacji na temat niepewności wyników i pomóc w podejmowaniu lepiej poinformowanych decyzji.
Błąd z próby a zarządzanie ryzykiem
Zarządzanie ryzykiem jest procesem identyfikacji, oceny i minimalizacji ryzyka związanego z działaniami organizacji. Błąd z próby ma bezpośredni związek z zarządzaniem ryzykiem, ponieważ może wpływać na jakość informacji, na podstawie których podejmowane są decyzje. Zarządzanie ryzykiem w kontekście błędu z próby polega na identyfikacji i ocenie ryzyka błędu z próby oraz opracowaniu planu minimalizacji tego ryzyka.
Monitorowanie i kontrola błędu z próby jest ważnym elementem zarządzania ryzykiem. Polega ona na systematycznym monitorowaniu procesu badawczego i analizie wyników, aby wykryć ewentualne błędy z próby i podjąć odpowiednie kroki w celu ich poprawy. Monitorowanie i kontrola błędu z próby powinny być realizowane na bieżąco, aby zapewnić wiarygodność wyników badania.
Zarządzanie ryzykiem w kontekście błędu z próby znajduje zastosowanie w praktyce w różnych dziedzinach. Na przykład, w marketingu, firmy mogą stosować strategie zarządzania ryzykiem w celu minimalizacji ryzyka związanego z błędem z próby przy podejmowaniu decyzji marketingowych. W finansach, zarządzanie ryzykiem może być stosowane w celu minimalizacji ryzyka związanego z błędem z próby w analizie inwestycji. Również w działalności publicznej, zarządzanie ryzykiem może być stosowane w celu minimalizacji ryzyka związanego z błędem z próby przy podejmowaniu decyzji dotyczących polityki publicznej.
Przypisy
- ↑ Statystyka naukowa, pod red. T. Panek, Polskie Wydawnictwo Ekonomiczne, Warszawa 2007, 36-37
- ↑ E. Babbie, Podstawy badań społecznych, PWN, Warszawa 2008, s. 225-226.
Błąd z próby — artykuły polecane |
Obszar odrzucenia — Wnioskowanie statystyczne — Wykres pudełkowy — ANOVA — Zmienna ilościowa — Rozkład częstości — Hipoteza statystyczna — Średnia — Rozkład normalny |
Bibliografia
- Babbie E. (2008), Podstawy badań społecznych, Wydawnictwo Naukowe PWN, Warszawa
- Statystyka naukowa, pod red. T. Panek, Polskie Wydawnictwo Ekonomiczne, Warszawa 2007, 36-37
Autor: Karolina Golańska