Rozstęp: Różnice pomiędzy wersjami
m (cleanup bibliografii i rotten links) |
m (cleanup bibliografii i rotten links) |
||
Linia 65: | Linia 65: | ||
* Wawak S. (2005), ''Zarządzanie Jakością. Teoria i Praktyka'', Helion/OnePress, Gliwice | * Wawak S. (2005), ''Zarządzanie Jakością. Teoria i Praktyka'', Helion/OnePress, Gliwice | ||
* Woźniak M. (2002), ''Statystyka ogólna'', Wydawnictwo Akademii Ekonomicznej w Krakowie, Kraków | * Woźniak M. (2002), ''Statystyka ogólna'', Wydawnictwo Akademii Ekonomicznej w Krakowie, Kraków | ||
* Zeliaś A. (2001), | * Zeliaś A. (2001), ''Metody statystyczne'', Polskie Wydawnictwo Ekonomiczne, Warszawa | ||
</noautolinks> | </noautolinks> | ||
Wersja z 20:02, 5 lis 2023
Rozstęp |
---|
Polecane artykuły |
Rozstęp - to miara zmienności zwana inaczej obszarem zmienności. Jest jedna z najprostszych absolutnych miar rozproszenia (dyspersji). Wchodzi w skład bezwzględnych miar zmienności, jest różnicą między najwyższą a najniższą wartością zmiennej (największą a najmniejszą wartością cechy statystycznej) w analizowanej zbiorowości (Ł. Paluch, s. 382). Oblicza się go według wzoru:
- R = max{xi} - min{xi} lub R = X max - X min.
- Gdzie:
- max{xi} - największa wartość cechy statystycznej; X max,
- min{xi} - najmniejsza wartość cechy statystycznej; X min.
- Wartość miary R zależy jedynie od dwóch skrajnych (największej i najmniejszej) wartości zmiennej, nie dostarczając tym samym wyczerpującej informacji o zróżnicowaniu pozostałych wartości cechy wszystkich jednostek należących do zbiorowości, tym bardziej, że w wielu sytuacjach wartości krańcowe mogą być przypadkowe. Jest to niewątpliwie słabością tej miary dyspersji.
Również wnioskowanie na podstawie rozstępu jest niebanalne z powodu zmienności na poziomie czynników (np. wartości nominalnej, końcówce, prędkości) która jest duża, natomiast mała liczba wyników może doprowadzić do błędów w interpretacji (O. Iwasińska-Kowalska 2010, s. 21)..
Systematyczne miary zmienności mają podział na bezwzględne (absolutne) oraz na względne (relatywne). Do miar bezwzględnych należą: rozstęp, rozstęp międzykwartylowy, odchylenie przeciętne, odchylenie ćwiartkowe, wariancja oraz odchylenie standardowe (A. Pasztyła 2003, s. 19).
Rozstęp międzykwartylowy
Dlatego też często stosuje się inny rodzaj rozstępu, jakim jest rozstęp międzykwartylowy lub inaczej obszar zmienności 50% środkowych wartości szeregu (RQ). Wyrażany jest on za pomocą wzoru:
- RQ = Q3 - Q1 lub Q1,3 = Q3(x) - Q1(x).
- Gdzie:
- Q1 - kwartyl rzędu 1 (kwartyl dolny, kwartyl pierwszy); Q1(x),
- Q3 - kwartyl rzędu 3 (kwartyl górny, kwartyl trzeci); Q3(x).
Miara ta ma podobną interpretację jak R, z tą jednak różnicą, że mówi o zmienności cechy 50 procent środkowych jednostek w szeregu (rozkładzie), zatem nie uwzględnia 50% skrajnych (często nietypowych) jednostek. Ponieważ pomiędzy pierwszym a trzecim kwartylem znajduje się z definicji 50% wszystkich obserwacji, dlatego im większa szerokość rozstępu ćwiartkowego, tym większe zróżnicowanie cechy. Na wartość rozstępu kwartylnego nie mają wpływu wartości jednostek mniejszych od kwartyla pierwszego (xi < Q1) oraz większych od kwartyla trzeciego (xi > Q3). Ponieważ miara ta nie jest wrażliwa na skrajne (nietypowe) wartości i z tego powodu zaleca się jej stosowanie w praktyce.
Rozstęp ruchomy
Poza dwoma wymienionymi rodzajami rozstępu występuję jeszcze rozstęp ruchomy. Jest on wartością bezwzględną różnic między dwoma kolejnymi wynikami (wartościami cechy, zmiennej).
Kiedy go stosujemy?
Rozstęp jest stosowany głównie w tych przypadkach, gdy jest konieczne szybkie określenie obszaru zmienności badanej zmiennej. Znajduje zastosowanie w kontroli jakości, gdzie jest utrzymywana ciągła obserwacja procesu produkcyjnego, przy sterowaniu procesami z wykorzystaniem kart kontrolnych Shewharta. Rozstęp wykorzystywany jest do tworzenia kart kontrolnych dla cech ocenianych liczbowo (mierzalnych) m.in. kart wartości średniej (X-średnie) i rozstępu (R), pojedynczych obserwacji (xi) i ruchomego rozstępu (R), mediany (Me) i rozstępu (R). Rozstęp obejmuje zakres, w jakim występują w próbie wartości badanej cechy
Słabości i zalety rozstępu jako miary zmienności
Jedną ze słabości rozstępu jest to, że zależy tylko od dwóch skrajnych wartości i nie uwzględnia innych obserwacji. Jeśli mamy zbiór danych, w którym większość wartości jest zbliżona do siebie, ale występują również kilka ekstremalnych wartości, rozstęp może być bardzo duży, sugerując większą zmienność, niż w rzeczywistości ma miejsce. Na przykład, jeśli mamy zbiór danych dotyczący temperatury w danym regionie, gdzie większość dni jest ciepłych, ale występują również kilka bardzo zimnych dni, rozstęp może być duży, sugerując dużą zmienność temperatury, mimo że większość dni jest w rzeczywistości podobnie ciepła.
Kolejną słabością rozstępu jest to, że nie uwzględnia kolejności występowania danych. Oznacza to, że rozstęp nie bierze pod uwagę, jak wartości są uporządkowane i czy występują jakiekolwiek wzorce czy tendencje. Może to być wadą, gdy analizujemy dane, które mają określoną kolejność, takie jak dane czasowe. Rozstęp nie uwzględnia zmian w czasie i nie informuje nas o ewentualnych trendach czy sezonowych wzorcach występujących w danych.
Pomimo tych słabości, rozstęp ma również pewne zalety jako miara zmienności. Przede wszystkim, jest to prosta miara, łatwa do zrozumienia i obliczenia. W przeciwieństwie do bardziej zaawansowanych miar, takich jak odchylenie standardowe czy wariancja, rozstęp nie wymaga skomplikowanych obliczeń statystycznych. Może to być korzystne, zwłaszcza w przypadkach, gdy zależy nam na szybkim i prostym sposobie oceny zmienności danych.
Rozstęp może również być przydatny w przypadkach, gdy interesuje nas tylko skrajne wartości w zbiorze danych. Jeśli chcemy wiedzieć, jak bardzo największa i najmniejsza wartość różnią się od siebie, rozstęp daje nam bezpośrednią odpowiedź. Może to być przydatne, na przykład, w analizie wyników testów, gdzie zależy nam głównie na identyfikacji najlepszego i najgorszego wyniku.
Bibliografia
- Iwasińska-Kowalska O. (2010), [https://www.infona.pl/resource/bwmeta1.element.baztech-article-BSW4-0075-0008/content/partContents/c505c449-9d9c-3236-aa50-1c1b0bc5705e Dokładność wyznaczenia promieni zaokrąglenia profilometrem stykowym, "PAK" nr 1
- Koronacki J., [ www.statsoft.pl/czytelnia/jakosc/statwkompl.html] "Statystyka w kompleksowym zarządzaniu jakością"
- Koronacki J., Mielniczuk j. (2001), "Statystyka dla studentów kierunków technicznych i przyrodniczych", Wydawnictwa Naukowo-Techniczne
- Paluch Ł., [https://ageconsearch.umn.edu/bitstream/205997/2/16-6-Paluch.pdf Zróżnicowanie poziomu rozwoju gmin wiejskich województwa małopolskiego w wymiarze gospodarczym, "Roczniki naukowe" nr 6
- Pasztyła A. (2003), Badania dochodu i ryzyka inwestycji za pomocą analizy rozkładów, "StatSoft"
- Starzyńska W. (2002), "Statystyka praktyczna", Wydawnictwo Naukowe PWN, Warszawa
- Wawak S. (2005), Zarządzanie Jakością. Teoria i Praktyka, Helion/OnePress, Gliwice
- Woźniak M. (2002), Statystyka ogólna, Wydawnictwo Akademii Ekonomicznej w Krakowie, Kraków
- Zeliaś A. (2001), Metody statystyczne, Polskie Wydawnictwo Ekonomiczne, Warszawa
Autor: Aleksandra Rajfura, Natalia Mardyła