Prawo wielkich liczb: Różnice pomiędzy wersjami
m (→Chińczyn, Kołmogorow, Etemadi: clean math) |
m (cleanup bibliografii i rotten links) |
||
Linia 29: | Linia 29: | ||
* mówimy, że ciąg zmiennych losowych <math> X_{1}, X_{2}, ... </math> jest zbieżny do <math> C </math> z prawdopodobieństwem jeden ('''prawie na pewno'''), gdy: | * mówimy, że ciąg zmiennych losowych <math> X_{1}, X_{2}, ... </math> jest zbieżny do <math> C </math> z prawdopodobieństwem jeden ('''prawie na pewno'''), gdy: | ||
<math> P \{\omega; {\frac{X_{1}(\omega) + X_{2}(\omega) + \dots + X_{n}(\omega)}{n}} \to C \} = 1 . </math> | <math> P \{\omega; {\frac{X_{1}(\omega) + X_{2}(\omega) + \dots + X_{n}(\omega)}{n}} \to C \} = 1 . </math> | ||
# Ciąg zmiennych losowych <math> X_{1}, X_{2}, ... </math> spełnia '''słabe prawo wielkich liczb''', gdy istnieje stała <math> C </math> taka, że według prawdopodobieństwa: <math> {\frac{X_{1} + X_{2} + \dots + X_{n}}{n}} \to_{p} C \textit{ dla } n \to + \infty . </math> | # Ciąg zmiennych losowych <math> X_{1}, X_{2}, ... </math> spełnia '''słabe prawo wielkich liczb''', gdy istnieje stała <math> C </math> taka, że według prawdopodobieństwa: <math> {\frac{X_{1} + X_{2} + \dots + X_{n}}{n}} \to_{p} C \textit{ dla } n \to + \infty . </math> | ||
# Ciąg zmiennych losowych <math> X_{1}, X_{2}, ... </math> spełnia '''mocne prawo wielkich liczb''', gdy istnieje stała <math> C </math> taka, że: <math> {\frac{X_{1} + X_{2} + \dots + X_{n}}{n}} \to C \textit{ dla } P \textit{-prawie na pewno} .</math> | # Ciąg zmiennych losowych <math> X_{1}, X_{2}, ... </math> spełnia '''mocne prawo wielkich liczb''', gdy istnieje stała <math> C </math> taka, że: <math> {\frac{X_{1} + X_{2} + \dots + X_{n}}{n}} \to C \textit{ dla } P \textit{-prawie na pewno} .</math> | ||
Linia 45: | Linia 45: | ||
* w statystyce. Zgodnie z prawem wielkich liczb wnioski o konkretnej grupie można wyciągnąć tylko na podstawie odpowiednio dużej próby. Im [[próba]] jest większa tym bardziej [[wynik]] powinien zbliżać się do wartości przeciętnej. | * w statystyce. Zgodnie z prawem wielkich liczb wnioski o konkretnej grupie można wyciągnąć tylko na podstawie odpowiednio dużej próby. Im [[próba]] jest większa tym bardziej [[wynik]] powinien zbliżać się do wartości przeciętnej. | ||
== Przypisy == | ==Przypisy== | ||
<references /> | <references /> | ||
== Bibliografia == | ==Bibliografia== | ||
<noautolinks> | |||
* Feller W. (2007), ''Wstęp do rachunku prawdopodobieństwa'', Wydawnictwo Naukowe PWN, Warszawa | * Feller W. (2007), ''Wstęp do rachunku prawdopodobieństwa'', Wydawnictwo Naukowe PWN, Warszawa | ||
* Hand D.J., (2014), ''[https://books.google.pl/books?id=3vAXBwAAQBAJ&pg=PT51&dq=Prawa+wielkich+liczb&hl=pl&sa=X&ved=0ahUKEwiIpN7qhrfpAhUx4aYKHQLuB2gQ6AEIKDAA#v=onepage&q=Prawa%20wielkich%20liczb&f=false Zasada nieprawdopodobieństwa Dlaczego codziennie zdarzają się cuda, zbiegi okolicznościi rzadkie wydarzenia]'', | * Hand D.J., (2014), ''[https://books.google.pl/books?id=3vAXBwAAQBAJ&pg=PT51&dq=Prawa+wielkich+liczb&hl=pl&sa=X&ved=0ahUKEwiIpN7qhrfpAhUx4aYKHQLuB2gQ6AEIKDAA#v=onepage&q=Prawa%20wielkich%20liczb&f=false Zasada nieprawdopodobieństwa Dlaczego codziennie zdarzają się cuda, zbiegi okolicznościi rzadkie wydarzenia]'', Grupa Wydawnicza Foksal, Warszawa | ||
* Jakubowski A., (2011), ''Statystyka i eksploracja danych Repetytorium z teorii prawdopodobieństwa'', Wydawca: UMK Toruń, Toruń | |||
* Jakubowski J., Sztencel R. (2001). ''Wstęp do teorii prawdopodobieństwa'', Wydawnictwo SCRIPT, Warszawa | * Jakubowski J., Sztencel R. (2001). ''Wstęp do teorii prawdopodobieństwa'', Wydawnictwo SCRIPT, Warszawa | ||
* Krysicki W., Bartos J., Dyczka W., Królikowska K., Wasielewski M. (1999), '' Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach'', Wydawnictwo Naukowe PWN, Warszawa | |||
* Krysicki W., Bartos J., Dyczka W., Królikowska K., Wasielewski M. (1999), '' | * Nawrocki J., Winnicki A., (2010), ''Matematyka cz.5 Elementy probabilistyki i statystyki matematycznej'', Politechnika Warszawska, Warszawa | ||
* Nawrocki J., Winnicki A., (2010), '' | |||
* Seneta E., (2006), ''[https://projecteuclid.org/download/pdfview_1/euclid.bj/1377612845 A Tricentenary history of the Law of Large Numbers]'', School of Mathematics and Statistics, University of Sydney, Australia | * Seneta E., (2006), ''[https://projecteuclid.org/download/pdfview_1/euclid.bj/1377612845 A Tricentenary history of the Law of Large Numbers]'', School of Mathematics and Statistics, University of Sydney, Australia | ||
</noautolinks> | |||
[[Kategoria:Statystyka i Ekonometria]] | [[Kategoria:Statystyka i Ekonometria]] |
Wersja z 18:05, 28 paź 2023
Prawo wielkich liczb |
---|
Polecane artykuły |
Prawo wielkich liczb – seria twierdzeń matematycznych opisujących związek między liczbą wykonywanych doświadczeń a faktycznym prawdopodobieństwem wystąpienia zdarzenia, którego te doświadczenia dotyczą.
Prawa Bernoulliego
W książce Wstęp do rachunku prawdopodobieństwa [1] autorzy przedstawiają prawa Bernoulliego w następujący sposób:
- Prawo wielkich liczb Bernoulliego
Niech oznacza liczbę sukcesów w schemacie Bernoulliego prób, gdzie prawdopodobieństwo sukcesu w pojedynczej próbie jest równe , to dla każdego .
- Mocne prawo wielkich liczb Bernoulliego
Jeśli oznacza liczbę sukcesów w schemacie Bernoulliego prób, a prawdopodobieństwo sukcesu w pojedynczej próbie jest równe . Wtedy -prawie wszędzie , gdy . Prawa te pod koniec XVII wieku udowodnił Jakub Bernoulli.
Prawa Markowa
Do sformułowania prawa wielkich liczb Markowa używamy następujących definicji i twierdzeń [2]:
- mówimy, że ciąg zmiennych losowych jest zbieżny do według prawdopodobieństwa, gdy dla każdego zachodzi:
- mówimy, że ciąg zmiennych losowych jest zbieżny do z prawdopodobieństwem jeden (prawie na pewno), gdy:
- Ciąg zmiennych losowych spełnia słabe prawo wielkich liczb, gdy istnieje stała taka, że według prawdopodobieństwa:
- Ciąg zmiennych losowych spełnia mocne prawo wielkich liczb, gdy istnieje stała taka, że:
Chińczyn, Kołmogorow, Etemadi
MPWL, czyli mocne prawo wielkich Chińczyna, Kołmogrowa, Etemida [3][4]:
- Ciąg oznaczmy jako ciąg niezależnych zmiennych losowych, które mają ten sam rozkład. Jeżeli to:
- To twierdzenie ma również odwrotną formę. Z tego, że wynika:
Zastosowanie prawa wielkich liczb
Prawa wielkich liczb znajdują zastosowanie w wielu dziedzinach nauki, oto kilka z nich [5]:
- metoda Monte Carlo obliczania całek. Jest ona szczególnie przydatna do obliczania całek wielokrotnych (w analizie matematycznej), rozwiązywania równań różniczkowych i całkowych. Stanisław Ulam użył tej metody do obliczeń związanych z bombą atomową.
- wyliczanie dystrybuanty empirycznej.
- dowodzenie twierdzeń dotyczących teorii liczb.
- w statystyce. Zgodnie z prawem wielkich liczb wnioski o konkretnej grupie można wyciągnąć tylko na podstawie odpowiednio dużej próby. Im próba jest większa tym bardziej wynik powinien zbliżać się do wartości przeciętnej.
Przypisy
Bibliografia
- Feller W. (2007), Wstęp do rachunku prawdopodobieństwa, Wydawnictwo Naukowe PWN, Warszawa
- Hand D.J., (2014), Zasada nieprawdopodobieństwa Dlaczego codziennie zdarzają się cuda, zbiegi okolicznościi rzadkie wydarzenia, Grupa Wydawnicza Foksal, Warszawa
- Jakubowski A., (2011), Statystyka i eksploracja danych Repetytorium z teorii prawdopodobieństwa, Wydawca: UMK Toruń, Toruń
- Jakubowski J., Sztencel R. (2001). Wstęp do teorii prawdopodobieństwa, Wydawnictwo SCRIPT, Warszawa
- Krysicki W., Bartos J., Dyczka W., Królikowska K., Wasielewski M. (1999), Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach, Wydawnictwo Naukowe PWN, Warszawa
- Nawrocki J., Winnicki A., (2010), Matematyka cz.5 Elementy probabilistyki i statystyki matematycznej, Politechnika Warszawska, Warszawa
- Seneta E., (2006), A Tricentenary history of the Law of Large Numbers, School of Mathematics and Statistics, University of Sydney, Australia
Autor: Mariola Klaś