Prawa De Morgana
Prawa de Morgana - rodzina praw logiki - zawsze prawdziwych zdań w logice - noszących nazwę pochodzącą od nazwiska jego odkrywcy, jakim jest August de Morgan. Oryginalne hasła należą do rachunku klas, jednak ich rodzina odnajduje swoje miejsce także w prawach dotyczących zdań oraz predykantów (występują zmienne w zdaniu przyjmujące wartości zarówno prawdziwe jak i fałszywe oraz posiadają formę złożoną)
Prawa logiki
Prawa logiki nazywane także tautologią, są to zdania logiczne, które zawsze będą prawdziwe, bez względu na wartość logiczną, z której są zbudowane. Na ich podstawie szacuje się wynikanie logiczne jednych zdań z drugich. Stanowią podstawę operacji w logice.
August de Morgan
August de Morgan - angielski matematyk i logik. Urodzony 27 czerwca 1806 roku w Maduraju (Indie). Od 1828 roku do 1866 roku, z pięcioletnią przerwą w 1831 r. wykładał matematykę w londyńskim University College. Po wielu latach badań nad sylogistyką opracował prawa, nazwane w późniejszym czasie jego nazwiskiem. Był jedynym z przyczyniających się do powstania logiki matematycznej, rozszerzając logikę arystotelesowską. Wprowadził termin "indukcja matematyczna". Zajmował się także innymi dziedzinami matematyki. Były to: algebra, prawdopodobieństwo, historia matematyki. Zmarł 18 marca 1871 roku w Londynie.
I Prawo de Morgana
I prawo De Morgana jest prawem zaprzeczenia koniunkcji. Określa się je wzorem: ~(p ∧ q) ↔ (~p ∨ ~q). Dowiadujemy się z niego, że zaprzeczenie koniunkcji dwóch zdań (∼(p ∧ q)) jest równoważne alternatywie zaprzeczeń tych zdań ((∼p) ∨ (∼q)) (Lapis W. 2014 s. 19).
Tabela poniżej przedstawia zestaw wartości logicznych w I Prawie de Morgana:
p | q | p ∧ q | ~(p ∧ q) | ~p | ~q | (∼p) ∨ (∼q) | ~(p ∧ q) ↔ (~p ∨ ~q) |
---|---|---|---|---|---|---|---|
1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
II Prawo de Morgana
II prawo de Morgana jest prawem zaprzeczenia alternatywy. Określa się je wzorem: ~(p ∨ q) ↔ (~p ∧ ~q). Dowiadujemy się z niego, że zaprzeczenie alternatywy dwóch zdań (∼(p ∨ q)) jest równoważne koniunkcji zaprzeczeń tych zdań ((∼p) ∧ (∼q)) (Lapis W. 2014 s. 19).
Tabela poniżej prezentuje zestaw wartości logicznych w II Prawie de Morgana
p | q | p ∨ q | ~(p ∨ q) | ~p | ~q | (∼p) ∧ (∼q) | ~(p ∨ q) ↔ (~p ∧ ~q) |
---|---|---|---|---|---|---|---|
1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
Rachunek kwantyfikatorów
Prawa de Morgana także odnajdują swoje miejsce w rachunku kwantyfikatorów. Prawo rachunku kwantyfikatorów mówi o zdaniach zawierających kwantyfikatory oraz jest prawdziwe niezależnie od formy. Opisują one reguły zaprzeczania kwantyfikatorom. Określa się to wzorem: ~(∀x p (x)) ↔ ~(∃x ~p (x)) oraz ~(∃x p (x)) ↔ (∀x ~p (x)). Kwantyfikatory są symbolami służące do formułowania zdań takich jak: "dla każdego..". oraz "dla pewnego…" itp. w logice matematycznej (Trzęsicki K. 2008, s. 304).
Teoria Mnogości
Prawa de Morgana w teorii mnogości odnajdują swoje miejsce w opisie działania dopełnienia. Prawa de Morgana dla nieskończonych rodzin zbiorów zapisuje się analogicznie jak w teorii mnogości.
Inne ważne wzory z zakresu logiki
Z zakresu logiki poza prawami odkrytymi przez Augusta de Morgana, spotkać możemy się także z prawami takimi jak:
- prawo podwójnej negacji: ~(~p)) ↔ p
- przemienność alternatywy: p ∨ q ↔ q ∨ p
- przemienność koniunkcji: p ∧ q ↔ q ∧ p
- łączność alternatywy: (p ∨ q) ∨ r ↔ ∨ (q ∨ r)
- łączność koniunkcji: (p ∧ q) ∧ r ↔ p ∧ (q ∧ r)
- rozdzielność koniunkcji względem alternatywy: p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r)
- rozdzielność alternatywy względem koniunkcji: p ∨ (q ∧ r) ↔ (p ∨ q) ∧ (p ∨ r)
- prawo wyłączonego środka: p v p~
- prawo zaprzeczenia implikacji: ~(p → q) ↔ p ∧ ~q
- prawo zastąpienia równoważności implikacją: (p ↔ q) ↔ [(p → q) ∧ (q → p)]
- prawo kontrapozycji: (p → q) ↔ (~q → ~p)
- prawo odrywania: [(p → q) ∧ p] → q
- prawo eliminacji implikacji: (p → q) ↔ (~p) ∨ q (Lapis W. 2014, s. 17).
Prawa De Morgana w innych dziedzinach
Zastosowanie w informatyce
Prawa De Morgana odgrywają istotną rolę w programowaniu logicznym i tworzeniu algorytmów. Są one podstawowymi narzędziami pozwalającymi na manipulację logicznymi wyrażeniami i przekształcanie ich w bardziej czytelne i zrozumiałe formy.
Przykładem zastosowania praw De Morgana w programowaniu komputerowym jest uproszczenie warunków logicznych. Dzięki tym prawom możemy przekształcić skomplikowane wyrażenia logiczne, co ułatwia ich analizę i zrozumienie. Na przykład, jeśli mamy wyrażenie "nie (A i B)", możemy je zrewidować za pomocą praw De Morgana na "nie A lub nie B". W ten sposób dokonujemy prostego, ale efektywnego uproszczenia, które ułatwia dalsze operacje na wyrażeniach logicznych.
Prawa De Morgana znajdują także zastosowanie w analizie obwodów elektrycznych w układach cyfrowych. Pozwalają one na uproszczenie skomplikowanych równań logicznych, co ułatwia projektowanie i analizę układów elektronicznych. Dzięki prawom De Morgana możemy przekształcać równania logiczne, co prowadzi do zoptymalizowanych struktur obwodów.
W przypadku baz danych, prawami De Morgana można manipulować zapytaniami logicznymi, co ułatwia przetwarzanie danych. Na przykład, jeśli chcemy znaleźć wszystkie rekordy, które nie spełniają określonego warunku, możemy zastosować prawo De Morgana i przekształcić zapytanie na formę, która jest łatwiejsza do wykonania.
Zastosowanie w teorii systemów
Prawa De Morgana odgrywają istotną rolę w analizie i projektowaniu skomplikowanych systemów informacyjnych. Pozwalają one na przekształcanie i upraszczanie logicznych wyrażeń, co ułatwia analizę złożonych systemów.
Przykładem zastosowania praw De Morgana w teorii systemów może być analiza zależności między różnymi elementami składowymi systemu. Dzięki prawom De Morgana możemy przekształcać złożone równania logiczne, co prowadzi do lepszej analizy i zrozumienia systemu.
Zastosowanie w matematyce
Prawa De Morgana odgrywają również ważną rolę w matematyce, zwłaszcza w teorii mnogości, teorii dowodzenia itp. Pozwalają na manipulację logicznymi wyrażeniami i przekształcanie ich w bardziej zrozumiałe formy.
Analiza znaczenia praw De Morgana w matematyce jest niezwykle istotna, ponieważ pozwala na uproszczenie skomplikowanych wyrażeń logicznych. Przykładowo, prawo De Morgana może być stosowane do przekształcania równań zbiorów, co ułatwia analizę i dowodzenie w teorii mnogości.
Filozofia
Prawa De Morgana odgrywają ważną rolę w logice filozoficznej. Pomagają w analizie i manipulacji logicznymi wyrażeniami, co jest niezbędne w filozofii.
Przykładem zastosowania praw De Morgana w filozofii jest analiza argumentów i wniosków logicznych. Dzięki tym prawom możemy przekształcać złożone argumenty i wnioski, co prowadzi do lepszego zrozumienia i analizy filozoficznych tez.
Psychologia
Prawa De Morgana mają również znaczenie w psychologii, zwłaszcza w analizie procesów poznawczych. Pomagają one w analizie i manipulacji logicznymi wyrażeniami, co jest niezbędne w badaniu procesów myślowych.
Przykładem zastosowania praw De Morgana w psychologii jest analiza tworzenia i manipulacji konceptami. Prawa te umożliwiają psychologom przekształcanie wyrażeń logicznych, co prowadzi do lepszego zrozumienia i badania procesów poznawczych.
Prawa De Morgana — artykuły polecane |
Nominalizm — Efekt domina — Brzytwa Ockhama — Złoty podział — Kodeks — Wartość bezwzględna — Pascal (język programowania) — Kodeks Hammurabiego — Geocentryzm |
Bibliografia
- Lapis W. (2014), Matematyka dla laika
- Marciszewski W. (2003), Prawa de Morgana i ich zastosowania, Logika
- Trzęsicki K. (2008), Logika Nauka i sztuka
Autor: Tomasz Mirocha
.