Wariancja składnika resztowego
Wariancja składnika resztowego |
---|
Polecane artykuły |
Jest syntetycznym miernikiem <wyrażonym jedną liczbą> dyspersji wartości empirycznych
wokół teoretycznych (zwana wariancją resztową)
Jeśli przyjmiemy, że funkcja regresji w syntetyczny sposób opisuje wpływ zmiennej
niezależnej na zmienną zależną, to reszty są obrazem odchyleń od dostrzeżonej
prawidłowości. Odchylenia te będą tym większe, im silniejsze będzie działanie
czynników o charakterze przypadkowym znikształcających obserwowany związek.
Miarą wahań przypadkowych jest właśnie wariancja resztowa [1].
Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle s^2\left (u_i)\right)} =Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \frac{\sum_{i=1}^n \left (y_i-\bar{y}\right)^2}{\left (n-k\right)}} =Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \frac{\sum_{i=1}^n u_i^2}{n-k}}
gdzie n jest liczebnością próby, a k - liczbą szacowanych parametrów funkcji regresji
W przypadku funkcji regresji X względem Y wzór na wariancję resztową przyjmuje postać:
Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle s^2 \left (z_i\right) } = Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \frac{\sum_{i=1}^n \left (x_i-\bar{x_i}\right)^2}{\left (n-k\right)}} = Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \frac{\sum_{i=1}^n z_i^2}{n-k}}
Pierwiastek kwadratowy z wariancji resztowej (czyli odchylenie standardowe składnika resztowego)
informuje o tym, jakie jest przeciątne odchylenie empirycznych wartości zmiennej objaśnianej od wartości teoretycznych
otrzymanych z funkcji regresji [2]. W miarę zwrostu liczbowej wartości odchylenia standardowego
skłądnika resztowego statystyczna dobroć dopasowania danej funkcji regresji do danych
empirycznych maleje. Wariancje składników resztowych można również wyznaczyć z następujących wzorów:
Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle s^2\left (u_i\right)} = Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle s^2\left (y\right)} - Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle s^2\left (\bar{y_i}\right)}
- oraz
Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle s^2\left (z_i\right)} = Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle s^2\left (x\right)\left[1-r_{x, y}\right]}
Dowodzi się, że wariancja zaobserwowanych w próbie wartości zmiennej zależnej równa się sumie wariancji
wartości teoretycznych oraz wariancji resztowej [3].
TL;DR
Artykuł omawia pojęcie wariancji resztowej w analizie regresji. Wariancja resztowa mierzy odchylenia wartości empirycznych od wartości teoretycznych w funkcji regresji. Wartość odchylenia standardowego informuje o dopasowaniu funkcji regresji do danych. Artykuł różni także składnik resztowy od składnika losowego i omawia klasyczny model Sharpa.
Różnica między składnikiem resztowym a składnikiem losowym
Zasadnicze różnice pomiędzy pojęciami składników losowych i skłądników resztowych w analizie regresji
oraz różnica pomiędzy wariancją składnika resztowego Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle S^2} (u) a wariancją składnika losowego Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \sigma^2} (Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \xi} ).
Składnik resztowy możemy przedstawić jako funkcję błędów losowych i nielosowych o postaci:
Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle u_i=f \left (c_1, c_2, c_3, c_4,\xi \right),}
gdzie:
- c - to błędy systematyczne
- Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle c_1} - błąd wynikający z przyjęcia danej funkcji regresji
- - błąd wynikający z nieuwzględnienia innych (poza daną) zmiennych objaśniających
- Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle c_3} - błąd wynikający z pomiaru, agregacji, przyjętych definicji itp
- Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle c_4} - błąd wynikający z innych (nielosowych) przyczyn
- Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \xi} - błąd o charakterze przypadkowym- (składnik losowy)
Jest oczywiste, że funkcja regresji Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \bar{y_i}} =f (x) jest tym lepiej dopasowana do regresji "prawdziwej",
im łączne rozmiary błędów nielosowych są mniejsze, a
wariancja składnika resztowego Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle S^2} (u) musi być większa od wariancji składnika losowego Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \sigma^2\left (\xi\right)} . Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle S^1} (u) jest bowiem punktową oceną Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \sigma^2\left (\xi\right)} . Im model regresji dwuwymiarowej jest gorzej dopasowany do badanej
rzeczywistości, tym wariancja składnika resztowego jest "gorszą" oceną wariancji skłądnika losowego
(różnica między Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle S^2} (u) a Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \sigma^2\left (\xi\right)} rośnie). Przy idealnym dopasowaniu modelu, tzn. przy założeniu, że
łączny efekt błędów nielosowych jest równy 0, wariancja resztowa równałaby się Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \sigma^2\left (\xi\right)} .
Sytuacje takie nie występują jednak w praktyce ze wzsględu na złożony mechanizm kształtowania się zmienności
zjawisk gospodarczo - społecznych [4].
Klasyczny model Sharpa
Dla każdego równania oszacowanego MNK (Metoda Najmniejszych Kwadratów) obiera się dwa parametry struktury stochastycznej modelu, które służą jako ocena stabilności modelu. Są to: odchylenie standardowe składnika resztowego i współczynnik korelacji wielorakiej. Odchylenie standardowe składnika resztowego jest niezbędne do wyznaczenia linii ograniczających, jeśli chodzi o zmiane stóp zwrotu akcji. Do stóp zwrotu akcji obliczonych na podstawie modelu dodaje się podwojoną wartość odchylenia standardowego składnika resztowego. W ten sposób otrzymuje się górną linię sygnałową. Dolna linia sygnałowa powstaje poprzez różnice cen akcji podwojonego odchylenia standardowego składnika resztowego [5].
Przypisy
Bibliografia
- Goczek Ł., (2012.) Metody ekonometryczne w modelach wzrostu gospodarczego, Uniwersytet Warszawski, Wydział Nauk Ekonomicznych, Katedra Makroekonomii i Teorii Handlu Zagranicznego, Warszawa
- Krzysztofiak M. Luszmoewicz A., (1976.) "Statystyka", PWE, Warszawa
- Makać W. Urbanek-Krzysztofiak D., (2004.) "Metody opisu statystycznego", Wydawnictwo UG, Gdańsk
- Piontek K., (2002.) Pomiar ryzyka metodą VaR a modele AR-GARCH ze składnikiem losowym o warunkowym rozkładzie z "grubymi ogonami", Katedra Inwestycji Finansowych i Ubezpieczeń Akademia Ekonomiczne we Wrocławiu, Wrocław
- Sobczyk M. (2011), Statystyka, Wydawnictwo Naukowe PWN, Warszawa
- Tarczyński W., (2009.)O pewnym sposobie wyznaczania współczynnika beta na polskim rynku kapitalowym, Studia i Prace Wydziału Nauk Ekonomicznych i Zarządzania 15, 199-213, Uniwersytet Szczeciński
Autor: Nowacka Bernadeta Szymon Banach