Test zgodności chi-kwadrat: Różnice pomiędzy wersjami

Z Encyklopedia Zarządzania
m (Infobox update)
 
(LinkTitles.)
Linia 19: Linia 19:


"Testy zgodności służą do weryfikacji hipotezy o tym, że rozkład prawdopodobieństwa badanej cechy jest rozkładem określonego typu. Testy te są oczywiście testami nieparametrycznymi, gdyż testując hipotezę o typie rozkładu, nie możemy zakładać, jaki on jest.  
"Testy zgodności służą do weryfikacji hipotezy o tym, że rozkład prawdopodobieństwa badanej cechy jest rozkładem określonego typu. Testy te są oczywiście testami nieparametrycznymi, gdyż testując hipotezę o typie rozkładu, nie możemy zakładać, jaki on jest.  
Test zgodności chi-kwadrat wymaga dużej próby wylosowanej w sposób niezależny ze zbiorowości generalnej. Pozwala testować rozkłady zmiennej losowej skokowej, lub rozkłady zmiennej losowej ciągłej. Próba powinna być podzielona na rozłączne klasy w taki sposób, aby w każdej klasie była wystarczająca liczba obserwacji. Na ogół wymóg ten to około pięciu do dziesięciu obserwacji. To zastrzeżenie należy brać pod uwagę, jeżeli samodzielnie tworzymy szereg rozdzielczy zmiennej ciągłej. Dla zmiennej skokowej o niezbyt dużej liczbie możliwych realizacji, tzw. klasy są tworzone naturalnie przez kolejne wartości należące do zbioru realizacji."<ref>Kot M.S. Jakubowski J. Sokołowski A.(2011), ''Statystyka'', Wydawnictwo Difin, Warszawa s.241</ref>
Test zgodności chi-kwadrat wymaga dużej próby wylosowanej w sposób niezależny ze zbiorowości generalnej. Pozwala testować rozkłady zmiennej losowej skokowej, lub rozkłady zmiennej losowej ciągłej. [[Próba]] powinna być podzielona na rozłączne klasy w taki sposób, aby w każdej klasie była wystarczająca liczba obserwacji. Na ogół wymóg ten to około pięciu do dziesięciu obserwacji. To zastrzeżenie należy brać pod uwagę, jeżeli samodzielnie tworzymy szereg rozdzielczy zmiennej ciągłej. Dla zmiennej skokowej o niezbyt dużej liczbie możliwych realizacji, tzw. klasy są tworzone naturalnie przez kolejne wartości należące do zbioru realizacji."<ref>Kot M.S. Jakubowski J. Sokołowski A.(2011), ''Statystyka'', Wydawnictwo Difin, Warszawa s.241</ref>


Przykłady formułowania hipotezy:
Przykłady formułowania hipotezy:
Linia 39: Linia 39:
<google>ban728t</google>
<google>ban728t</google>
gdzie:
gdzie:
* pi - [[prawdopodobieństwo]], że cecha X przyjmuje wartość należącą do i-tego przedziału klasowego
* pi - [[prawdopodobieństwo]], że cecha X przyjmuje [[wartość]] należącą do i-tego przedziału klasowego
* npi - liczba jednostek, które powinny znaleźć się w i-tym przedziale przy założeniu, że cecha ma rozkład zgodny z hipotezą.  
* npi - liczba jednostek, które powinny znaleźć się w i-tym przedziale przy założeniu, że cecha ma rozkład zgodny z hipotezą.  


Linia 50: Linia 50:
<math>{\chi}^2</math> oznacza wartość empiryczną statystyki
<math>{\chi}^2</math> oznacza wartość empiryczną statystyki


Statystka ta stanowi rozbieżność pomiędzy rozkładem empirycznym a teoretycznym, co oznacza że zbyt duże wartości <math>{\chi}^2</math> powodują odrzucenie hipotezy zerowej.  
Statystka ta stanowi rozbieżność pomiędzy rozkładem empirycznym a teoretycznym, co oznacza że [[zbyt]] duże wartości <math>{\chi}^2</math> powodują odrzucenie hipotezy zerowej.  


Postać zbioru krytycznego:
Postać zbioru krytycznego:
Linia 68: Linia 68:
<math>{\chi}_{r,0}^2\ge{\chi}_{r,{\alpha}/2}^2</math>
<math>{\chi}_{r,0}^2\ge{\chi}_{r,{\alpha}/2}^2</math>


to odrzuca się hipoteze alternatywną: <math>\sigma^2=\sigma_0^2</math> na korzyść hipotezy:<math>\sigma^2\ne\sigma_0^2</math>
to odrzuca się hipoteze alternatywną: <math>\sigma^2=\sigma_0^2</math> na [[korzyść]] hipotezy:<math>\sigma^2\ne\sigma_0^2</math>


==Przykład testu zgodności chi-kwadrat==
==Przykład testu zgodności chi-kwadrat==


"Badano rzetelność kostki do gry,  tym celu wykonano nią 150 rzutów. Czy wyniki upoważniają nas do twierdzenia że kostka jest nierzetelna? Poziom istotności wynosi 0,05. Rozkład wyników przedstawia się następująco:
"Badano [[rzetelność]] kostki do gry,  tym celu wykonano nią 150 rzutów. Czy wyniki upoważniają nas do twierdzenia że kostka jest nierzetelna? [[Poziom istotności]] wynosi 0,05. Rozkład wyników przedstawia się następująco:


{| class="wikitable"
{| class="wikitable"

Wersja z 04:51, 22 maj 2020

Test zgodności chi-kwadrat
Polecane artykuły


Test zgodności chi-kwadrat jest to najczęściej stosowany test nieparametryczny. Służy on do weryfikowania hipotezy, że obserwowana cecha X w zbiorowości generalnej ma określony typ rozkładu, np. dwumianowy, Poissona, normalny itd.

"Testy zgodności służą do weryfikacji hipotezy o tym, że rozkład prawdopodobieństwa badanej cechy jest rozkładem określonego typu. Testy te są oczywiście testami nieparametrycznymi, gdyż testując hipotezę o typie rozkładu, nie możemy zakładać, jaki on jest. Test zgodności chi-kwadrat wymaga dużej próby wylosowanej w sposób niezależny ze zbiorowości generalnej. Pozwala testować rozkłady zmiennej losowej skokowej, lub rozkłady zmiennej losowej ciągłej. Próba powinna być podzielona na rozłączne klasy w taki sposób, aby w każdej klasie była wystarczająca liczba obserwacji. Na ogół wymóg ten to około pięciu do dziesięciu obserwacji. To zastrzeżenie należy brać pod uwagę, jeżeli samodzielnie tworzymy szereg rozdzielczy zmiennej ciągłej. Dla zmiennej skokowej o niezbyt dużej liczbie możliwych realizacji, tzw. klasy są tworzone naturalnie przez kolejne wartości należące do zbioru realizacji."[1]

Przykłady formułowania hipotezy:

  • H0: cecha X ma rozkład określony dystrybuantą F (x) = F0(x)
  • H0: cecha X ma rozkład N (100, 5)

Aby jednoznacznie określić rozkład teoretyczny w danej klasie najczęściej należy najpierw na podstawie próby oszacować odpowiednie parametry.

Test zgodności chi-kwadrat stosuje się:

  • gdy dane pochodzą z dużej n-elementowej próby wyznaczonej w sposób niezależny
  • gdy dane są przedstawione w postaci szeregu rozdzielczego o r przedziałach klasowych, o liczebnościach przedziałów n,..., n spełniających warunek

n1 + n2 +... + nr = n. Na ogół przyjmuje się, że ni >5, i = 1, 2,..., r

  • gdy rozkład hipotetyczny może być zarówno rozkładem typu ciągłego, jak i skokowego.

Postać statystyki sprawdzającej hipotezy H0:

gdzie:

  • pi - prawdopodobieństwo, że cecha X przyjmuje wartość należącą do i-tego przedziału klasowego
  • npi - liczba jednostek, które powinny znaleźć się w i-tym przedziale przy założeniu, że cecha ma rozkład zgodny z hipotezą.

statystyka ta ma rozkład o k=(r-s-1)

  • gdzie:
  • k - ilość stopni swobody
  • s - liczba parametrów do wyznaczenia na podstawie próby
  • r - liczba przedziałów klasowych

oznacza wartość empiryczną statystyki

Statystka ta stanowi rozbieżność pomiędzy rozkładem empirycznym a teoretycznym, co oznacza że zbyt duże wartości powodują odrzucenie hipotezy zerowej.

Postać zbioru krytycznego:

Gdzie: - wartość krytyczna z tablic rozkładu dla k = r - s - 1 stopni swobody i P = alfa

Reguły decyzyjne:

  • jeśli wartość - spełnia nierówność:

albo nierówność:

to odrzuca się hipoteze alternatywną: na korzyść hipotezy:

Przykład testu zgodności chi-kwadrat

"Badano rzetelność kostki do gry, tym celu wykonano nią 150 rzutów. Czy wyniki upoważniają nas do twierdzenia że kostka jest nierzetelna? Poziom istotności wynosi 0,05. Rozkład wyników przedstawia się następująco:

Liczba oczek 1 2 3 4 5 6
Liczba rzutów 20 23 27 24 24 32

Rozwiązanie:

1 20 1/6 25 -5 25 1,000
2 23 1/6 25 -2 4 0,160
3 27 1/6 25 +2 4 0,160
4 24 1/6 25 -1 1 0,040
5 24 1/6 25 -1 1 0,040
6 32 1/6 25 +7 49 1,960
Suma 150 1 150 0 3,360

źródło: [2]

Wartość statystyki testowej wynosi więc . W tablicy rozkładu chi-kwadrat w wierszu piątym, w kolumnie 0,05 znajdziemy wartość krytyczną 11,070. Empiryczna wartość statystyki testowej, czyli 3,360 jest mniejsza od wartości krytycznej 11,070, zatem nie ma podstaw do odrzucenia hipotezy zerowej."[3]

Bibliografia

Przypisy

  1. Kot M.S. Jakubowski J. Sokołowski A.(2011), Statystyka, Wydawnictwo Difin, Warszawa s.241
  2. Kot M.S. Jakubowski J. Sokołowski A.(2011), Statystyka, Wydawnictwo Difin, Warszawa s.243
  3. Kot M.S. Jakubowski J. Sokołowski A.(2011), Statystyka, Wydawnictwo Difin, Warszawa s.243


Autor: Magdalena Klepaczka, Aleksandra Kocjan