Metoda najmniejszych kwadratów

Z Encyklopedia Zarządzania
Wersja z dnia 18:22, 18 lis 2023 autorstwa Sw (dyskusja | edycje) (Pozycjonowanie)

Metoda najmniejszych kwadratów (MNK) jest jedną z najważniejszych technik używanych w statystyce i ekonometrii do estymacji parametrów modelu regresji liniowej. Jej celem jest minimalizacja sumy kwadratów różnic między wartościami obserwowanymi a wartościami przewidywanymi przez model.

W kontekście modelu regresji liniowej, MNK szuka linii najlepiej dopasowanej do danych, minimalizując sumę kwadratów reszt (różnic między wartościami obserwowanymi a wartościami przewidywanymi). Model regresji liniowej ma postać:

gdzie:

to zmienna zależna dla i-tej jednostki
to zmienna niezależna dla i-tej jednostki
i to parametry modelu, które chcemy estymować
to reszta (różnica między wartością obserwowaną a wartością przewidywaną przez model )

MNK estymuje parametry i poprzez minimalizację funkcji kwadratowej sumy reszt:

Wynikiem MNK są szacunki parametrów i , które minimalizują tę funkcję. Te szacunki można otrzymać poprzez różniczkowanie funkcji sumy kwadratów reszt i rozwiązanie układu równań wynikającego z równań normalnych.

Wyniki MNK można interpretować jako wartości, które minimalizują różnice między wartościami obserwowanymi a wartościami przewidywanymi przez model regresji liniowej. Im mniejsze są te różnice, tym lepsze dopasowanie modelu do danych.

Metoda najmniejszych kwadratów jest szeroko stosowana w dziedzinach takich jak ekonomia, finanse, nauki społeczne oraz wszędzie tam, gdzie analiza zależności między zmiennymi jest istotna.


Metoda najmniejszych kwadratówartykuły polecane
ANOVAPróg absolutnyEksperymentPróbaBłąd pomiaruMetoda badawczaZmienna zależnaBadanie kohortoweAlfa Cronbacha

Bibliografia

  • Kot S., Jakubowski J., Sokołowski A. (2011), Statystyka, Difin, Warszawa