Kogeneracja
Kogeneracja |
---|
Polecane artykuły |
Kogeneracja – równoległe wytwarzanie energii elektrycznej i cieplnej oraz/lub mechanicznej. Cechą charakterystyczną kogeneracji jest wysoka sprawność procesu – sprawność procesy wynosi przeciętnie 80%. Zaletę stanowi również niska emisja zanieczyszczeń [1][2].
Energia elektryczna i ciepło są podstawowymi rodzajami energii, które wykorzystuje się w obiektach produkcyjnych. Wytworzenie energii elektrycznej i ciepła polega w głównej mierze na zamianie energii chemicznej paliw w procesach cieplnych. Zasoby paliw kopalnych kurczą się, z tego względu istotne jest aby wdrażać na szeroką skalę rozwiązania pozwalające na oszczędności eksploatacyjne [3]. Kogenerację można wykorzystywać w elektrociepłowniach zawodowych oraz w mniejszej skali przy zastosowaniu agregatów kogeneracyjnych.
TL;DR
Kogeneracja to równoległe wytwarzanie energii elektrycznej i cieplnej. Jest to efektywny proces o niskiej emisji zanieczyszczeń. Może być stosowana w elektrociepłowniach i mikrokogeneratorach. W przypadku elektrociepłowni, ciepło jest tracone, dlatego mikrokogeneracja jest bardziej efektywna. Mikrokogeneracja to skojarzona produkcja energii elektrycznej i cieplnej o mocy poniżej 50 kW. Może być wykorzystywana w prywatnych przedsiębiorstwach, fabrykach i gospodarstwach domowych. Stosowane są różne rodzaje silników i paliw.
Elementy układów kogeneracyjnych
Podstawowymi elementami układów kogeneracyjnych wykorzystywanych w elektrociepłowniach są turbiny parowe przeciwprężne bądź upustowo-kondesacyjne, które pracują w obiegu zamkniętym Rankine’a. Zastosowanie mają również turbiny gazowe pracujące w obiegu Braytona. Występują również układy kombinowane, dwupaliwowe. W zamkniętym obiegu turbiny przeciwprężnej, w kotle wytwarza się para, następuje również jej przegrzanie. W turbinie rozgrzana para ulega rozprężeniu i trafia do wymiennika. Poprzez wymiennik następuje oddanie ciepła przegrzania i kondensacji na podgrzanie wody sieciowej. Przy zastosowaniu turbiny gazowej, do komory spalania kierowane jest sprężone powietrze. Następuje spalenie paliwa, ciepło oddawane jest do spalin. Spaliny ulegają rozprężeniu w turbinie napędzającej generator. Z turbiny, gorące spaliny o temperaturze 400-600 stopni Celsjusza kierowane są do rekuperatora, w którym sprężone powietrze zostaje wstępnie ogrzane. Końcowo trafiają do wymiennika, w którym następuje podgrzanie wody do celów ciepłowniczych [4]
Kogeneracja w małej skali
W przypadku rozdzielnego wytwarzania ciepła i energii elektrycznej, ciepło może być produkowane na miejscu w kotłowni gazowej. Energia elektryczna wyprodukowana w elektrowni przesyłana jest do odbiorców siecią elektroenergetyczną, przesyłową oraz rozdzielczą. W polskich elektrowniach głównym substratem procesu spalania jest węgiel. Produktem jest para wodna napędzająca turbiny oraz generatory prądu. Niestety, całość powstałego w wyniku tego procesu ciepła jest tracona. Odmienna sytuacja występuje w elektrociepłowniach-tutaj ciepło nie jest tracone i usuwane do otoczenia a sprzedawane odbiorcom. Niestety wykorzystanie kogeneracji w elektrociepłowniach jest ograniczone, z uwagi na znaczne odległości pomiędzy źródłem ciepła a odbiorcą. Przy poszukiwaniu oszczędności warto więc skorzystać z możliwości jakie daje mikrokogeneracja.
Mikrokogeneracja – według zapisów dyrektywy 2004/8/EC oznacza skojarzoną produkcję energii elektrycznej i cieplnej z wydajnością poniżej 50 kW. Jest to rodzaj kogeneracji, który dedykuje się prywatnym przedsiębiorstwom, niewielkim fabrykom oraz gospodarstwom domowym. Poprzez zredukowanie strat wiążących się z przesyłaniem energii cieplnej i elektrycznej możliwe jest ograniczenie emisji CO2 oraz innych toksycznych substancji [2]. W mikrokogeneracji znajdują zastosowanie [5]:
- Silniki spalinowe,
- Mikroturbiny gazowe,
- Ogniwa paliwowe,
- Silniki Stirlinga,
- kogeneratory Solarne,
- turbiny parowe,
- ORC.
W kogenereacji stosować można następujące paliwa[5]:
- Biomasę,
- Węgiel,
- Gaz palny,
- Wodór,
- Produkty ropopochodne,
- Energię słoneczną,
Przypisy
- ↑ Kiciński J., Lampart P., (2016), Kogeneracja w dużej i małej skali, ActaEnergetica, nr 2/2009
- ↑ 2,0 2,1 Małecki A. , Chmielewski A., Mydłowski T., Gumiński R., Dybała J. (2014), Silniki spalania zewnętrznego w układach mikrokogeneracji, Zeszyty Naukowe Instytutu Pojazdów, nr 2/2014
- ↑ Kaleta P., Wałek T.,(2014), Innowacyjna metoda zaopatrywania małych i średnich przedsiębiorstw produkcyjnych w ciepło i energię elektryczną, Systemy Wspomagania w Inżynierii Produkcji, zeszyt 2(8), str. 76-87
- ↑ Kiciński J., Lampart P., (2016), Kogeneracja w dużej i małej skali , ActaEnergetica, nr 2/2009
- ↑ 5,0 5,1 Lis Ł., Siwek T., Sztekler K., Kalawa W., (2018), Potencjał rozwoju mikrokogeneracji w Polsce, Przegląd elektrotechniczny, nr 4/2018
Bibliografia
- Kaleta P., Wałek T., (2014), Innowacyjna metoda zaopatrywania małych i średnich przedsiębiorstw produkcyjnych w ciepło i energię elektryczną, Systemy Wspomagania w Inżynierii Produkcji, zeszyt 2 (8), str. 76-87,
- Kiciński J., Lampart P., (2009), Kogeneracja w dużej i małej skali, ActaEnergetica, nr 2/2009,
- Lis Ł., Siwek T., Sztekler K., Kalawa W., (2018), Potencjał rozwoju mikrokogeneracji w Polsce, Przegląd elektrotechniczny, nr 4/2018,
- Małecki A. , Chmielewski A., Mydłowski T., Gumiński R., Dybała J. (2014), Silniki spalania zewnętrznego w układach mikrokogeneracji, Zeszyty Naukowe Instytutu Pojazdów, nr 2/2014,
Autor: Patryk Wykręt