Polarografia: Różnice pomiędzy wersjami
m (Dodanie MetaData Description) |
Nie podano opisu zmian |
||
Linia 15: | Linia 15: | ||
'''Polarografia''' – analiza polarograficzna, woltamperometria | '''Polarografia''' – analiza polarograficzna, woltamperometria, w której elektrodą wskaźnikową jest kroplowa kapiąca elektroda rtęciowa KER. Zaletą KER jest jej mała i stale odnawiająca się powierzchnia oraz łatwość jej polaryzacji płynącym przez nią prądem. Dzięki jej małym wymiarom prąd ten osiąga duże gęstości, a reakcje elektrodowe nie zmieniają praktycznie stężenia składników analizowanego roztworu. Elektroda ta może pracować w zakresie od -2 do 0,2 V [''Encyklopedia Techniki'' 1994 s. 372]. Twórcą tej metody był laureat nagrody nobla w 1959 r. profesor Uniwersytetu w Pradze, J. Heyrovsky [J. Minczewski, Z. Marczenko 1987 str. 330]. | ||
* Woltamperometria – [[technika]] analityczna, której podstawą jest [[pomiar]] zależności natężenie prądu – [[potencjał]] elektryczny w układzie elektrody pracującej i odniesienia zanurzonych w roztworze badanym zawierającym oznaczaną substancję i elektrolit podstawowy. Elektroda porównawcza (odniesienia) jest niepolaryzowana (np. elektroda kalomelowa), natomiast elektroda pracująca jest polaryzowaną obojętną. [W. W. Kubiak, R.Piech AGH] | |||
* KER – Kroplowa elektroda rtęciowa, stosowana w metodach polarograficznych. | |||
Polarografia jest jedną z najczęściej stosowanych metod analizy chemicznej, polega ona na wyznaczaniu prądowo-potencjałowej charakterystyki elektrody, na której występują wyłącznie | Polarografia jest jedną z najczęściej stosowanych metod analizy chemicznej, polega ona na wyznaczaniu prądowo-potencjałowej charakterystyki elektrody, na której występują wyłącznie napięcia dyfuzyjne, (...) zanurzonej w analizowanym roztworze. Roztwór zawiera oznaczone związki w znacznym rozcieńczeniu (10<sup>−4</sup>-10<sup>−2</sup>mol*1<sup>−1</sup>) oraz nadmiar obojętnego elektrolitu o dużym napięciu rozkładu. Często stosowany jest 1-molowy Kcl. | ||
Elektrolit ma za [[zadanie]] zmniejszyć opór roztworu, a jednocześnie nie dopuścić do wytworzenia się dodatkowego pola elektrycznego w warstwie dyfuzyjnej. Dzięki jego obecności oznaczane jony dostają się na powierzchnię elektrody jedynie w wyniku dyfuzji, jak tego wymaga teoria nadnapięcia dyfuzyjnego, nie zaś wędrówki w polu elektromagnetycznym [K. Pigoń, Z Ruziewicz 1993 str 297-298]. | Elektrolit ma za [[zadanie]] zmniejszyć opór roztworu, a jednocześnie nie dopuścić do wytworzenia się dodatkowego pola elektrycznego w warstwie dyfuzyjnej. Dzięki jego obecności oznaczane jony dostają się na powierzchnię elektrody jedynie w wyniku dyfuzji, jak tego wymaga teoria nadnapięcia dyfuzyjnego, nie zaś wędrówki w polu elektromagnetycznym [K. Pigoń, Z Ruziewicz 1993 str 297-298]. | ||
Polarograf – Jest to przyrząd stosowany w analizie polarograficznej, który w sposób ciągły rejestruje zmiany natężenia prądu płynącego przez naczynie elektrolitycznie w zależności od napięcia przyłożonego do układu elektrod [''Encyklopedia Techniki'' 1969 str. 218]. | Polarograf – Jest to przyrząd stosowany w analizie polarograficznej, który w sposób ciągły rejestruje zmiany natężenia prądu płynącego przez naczynie elektrolitycznie w zależności od napięcia przyłożonego do układu elektrod [''Encyklopedia Techniki'' 1969 str. 218]. | ||
Jeżeli kroplową elektrodę rtęciową, połączoną według schematu wprowadzi się do elektrolitu nie ulegającego w zakresie przykładanych potencjałów reakcjom elektrochemicznym (np. kwasy, zasady i sole metali alkalicznych) oraz zawierające małe ilości zdolnych do redukcji kationów to zmiany natężenia prądu płynącego pomiędzy | Jeżeli kroplową elektrodę rtęciową, połączoną według schematu wprowadzi się do elektrolitu nie ulegającego w zakresie przykładanych potencjałów reakcjom elektrochemicznym (np. kwasy, zasady i sole metali alkalicznych) oraz zawierające małe ilości zdolnych do redukcji kationów to zmiany natężenia prądu płynącego pomiędzy elektrodami, wywołane zmianami przykładanego napięcia można zilustrować w postaci krzywych przedstawionych poniżej [J. Minczewski, Z. Marczenko 1987 str. 331] | ||
<google>text</google> | |||
== Zastosowanie polarografii w analizie chemicznej == | |||
Polarografia jest szeroko stosowana w różnych dziedzinach analizy chemicznej. Jedną z głównych dziedzin jest analiza wód, w której polarografia jest wykorzystywana do oznaczania stężeń metali ciężkich. [[Metoda]] ta pozwala na precyzyjne i czułe oznaczanie zawartości metali takich jak ołów, rtęć czy kadm w próbkach wody. Ponadto, polarografia znajduje zastosowanie w badaniu aktywności enzymów. Dzięki tej technice można monitorować reakcje enzymatyczne i określić ich kinetykę. Ponadto, polarografia może być stosowana do monitorowania procesów elektrochemicznych w reakcjach redoks. Pozwala to na badanie mechanizmów reakcji i kontrolę przebiegu procesów elektrochemicznych. Istnieją również inne przykłady zastosowań polarografii w analizie chemicznej, takie jak oznaczanie stężeń substancji farmaceutycznych czy analiza żywności. | |||
Polarografia posiada wiele zalet jako metoda analizy chemicznej. Przede wszystkim, jest to metoda czuła i precyzyjna, co pozwala na dokładne oznaczanie stężeń badanych substancji. Ponadto, polarografia jest stosunkowo prosta i szybka, co umożliwia jej szerokie zastosowanie w laboratoriach. Elektrody rtęciowe, wykorzystywane w tej technice, charakteryzują się wysoką reaktywnością i stabilnością, co przekłada się na [[dokładność]] pomiarów. Ponadto, polarografia umożliwia analizę substancji o różnej reaktywności elektrochemicznej, co czyni ją wszechstronną i elastyczną metodą. | |||
Pomimo wielu zalet, polarografia ma również pewne ograniczenia. Jednym z głównych ograniczeń jest konieczność stosowania elektrod rtęciowych. Elektrody te są trujące i wymagają odpowiedniej obsługi. Ponadto, [[zakres]] pracy elektrody rtęciowej jest ograniczony, co może utrudniać analizę niektórych substancji. Istnieją także trudności z analizą substancji o niskiej reaktywności elektrochemicznej, które mogą nie wykazywać odpowiednich sygnałów polarograficznych. | |||
== Rozwinięcie techniki woltamperometrii == | |||
Woltamperometria jest techniką elektrochemiczną, która opiera się na pomiarze prądu przepływającego przez elektrodę w zależności od napięcia zastosowanego między elektrodą pracującą a elektrodą porównawczą. Głównym założeniem woltamperometrii jest analiza substancji elektroaktywnych, które wykazują reakcje elektrochemiczne. Technika ta opiera się na zasadzie, że prąd elektrochemiczny jest proporcjonalny do stężenia badanej substancji. | |||
W woltamperometrii, elektroda pracująca jest elektrodą, na której zachodzi reakcja elektrochemiczna analizowanej substancji. Elektroda porównawcza pełni rolę odniesienia, umożliwiając pomiar prądu w stosunku do elektrody pracującej. Różnice między tymi elektrodami obejmują różnicę w potencjale elektrody oraz [[materiał]], z którego są wykonane. | |||
Woltamperometria znajduje zastosowanie w wielu dziedzinach analizy chemicznej. Przykładowo, może być wykorzystana do oznaczania stężenia substancji elektroaktywnych w próbkach żywności, farmaceutyków czy środowiskowych. Dzięki precyzyjnym pomiarom prądu, można dokładnie określić zawartość badanych substancji. Ponadto, woltamperometria umożliwia badanie kinetyki reakcji elektrochemicznych, co jest istotne w kontekście zrozumienia i kontrolowania procesów chemicznych. | |||
Podobnie jak w przypadku polarografii, również woltamperometria ma pewne ograniczenia. Jednym z nich jest konieczność analizy substancji elektroaktywnych, co wyklucza możliwość badania substancji nieelektroaktywnych. Ponadto, technika ta wymaga odpowiedniego przygotowania elektrod i odpowiednich warunków eksperymentalnych, co może stanowić pewne trudności w praktyce. | |||
==Bibliografia== | ==Bibliografia== | ||
* ''Encyklopedia Techniki, podstawy techniki'', wydanie drugie-zmienione, Wydawnictwo Naukowo-Techniczne, Warszawa 1994 | * ''Encyklopedia Techniki, podstawy techniki'', wydanie drugie-zmienione, Wydawnictwo Naukowo-Techniczne, Warszawa 1994 | ||
* ''Encyklopedia Techniki, | * ''Encyklopedia Techniki, [[materiałoznawstwo]]'', Wydawnictwo Naukowo-Techniczne, Warszawa 1969 | ||
* J. Minczewski, Z. Marczenko ''Chemia Analityczna Tom III – Analiza Instrumentalna'', wydanie czwarte, Wydawnictwo PWN, Warszawa 1987 | * J. Minczewski, Z. Marczenko ''Chemia Analityczna Tom III – Analiza Instrumentalna'', wydanie czwarte, Wydawnictwo PWN, Warszawa 1987 | ||
* K. Pigoń, Z. Ruziewicz, ''Chemia Fizyczna Cześć I, w wydanie IV poprawione'', Wydawnictwo PWN, Warszawa 1993 | * K. Pigoń, Z. Ruziewicz, ''Chemia Fizyczna Cześć I, w wydanie IV poprawione'', Wydawnictwo PWN, Warszawa 1993 |
Wersja z 10:54, 17 paź 2023
Polarografia |
---|
Polecane artykuły |
Polarografia – analiza polarograficzna, woltamperometria, w której elektrodą wskaźnikową jest kroplowa kapiąca elektroda rtęciowa KER. Zaletą KER jest jej mała i stale odnawiająca się powierzchnia oraz łatwość jej polaryzacji płynącym przez nią prądem. Dzięki jej małym wymiarom prąd ten osiąga duże gęstości, a reakcje elektrodowe nie zmieniają praktycznie stężenia składników analizowanego roztworu. Elektroda ta może pracować w zakresie od -2 do 0,2 V [Encyklopedia Techniki 1994 s. 372]. Twórcą tej metody był laureat nagrody nobla w 1959 r. profesor Uniwersytetu w Pradze, J. Heyrovsky [J. Minczewski, Z. Marczenko 1987 str. 330].
- Woltamperometria – technika analityczna, której podstawą jest pomiar zależności natężenie prądu – potencjał elektryczny w układzie elektrody pracującej i odniesienia zanurzonych w roztworze badanym zawierającym oznaczaną substancję i elektrolit podstawowy. Elektroda porównawcza (odniesienia) jest niepolaryzowana (np. elektroda kalomelowa), natomiast elektroda pracująca jest polaryzowaną obojętną. [W. W. Kubiak, R.Piech AGH]
- KER – Kroplowa elektroda rtęciowa, stosowana w metodach polarograficznych.
Polarografia jest jedną z najczęściej stosowanych metod analizy chemicznej, polega ona na wyznaczaniu prądowo-potencjałowej charakterystyki elektrody, na której występują wyłącznie napięcia dyfuzyjne, (...) zanurzonej w analizowanym roztworze. Roztwór zawiera oznaczone związki w znacznym rozcieńczeniu (10−4-10−2mol*1−1) oraz nadmiar obojętnego elektrolitu o dużym napięciu rozkładu. Często stosowany jest 1-molowy Kcl.
Elektrolit ma za zadanie zmniejszyć opór roztworu, a jednocześnie nie dopuścić do wytworzenia się dodatkowego pola elektrycznego w warstwie dyfuzyjnej. Dzięki jego obecności oznaczane jony dostają się na powierzchnię elektrody jedynie w wyniku dyfuzji, jak tego wymaga teoria nadnapięcia dyfuzyjnego, nie zaś wędrówki w polu elektromagnetycznym [K. Pigoń, Z Ruziewicz 1993 str 297-298].
Polarograf – Jest to przyrząd stosowany w analizie polarograficznej, który w sposób ciągły rejestruje zmiany natężenia prądu płynącego przez naczynie elektrolitycznie w zależności od napięcia przyłożonego do układu elektrod [Encyklopedia Techniki 1969 str. 218].
Jeżeli kroplową elektrodę rtęciową, połączoną według schematu wprowadzi się do elektrolitu nie ulegającego w zakresie przykładanych potencjałów reakcjom elektrochemicznym (np. kwasy, zasady i sole metali alkalicznych) oraz zawierające małe ilości zdolnych do redukcji kationów to zmiany natężenia prądu płynącego pomiędzy elektrodami, wywołane zmianami przykładanego napięcia można zilustrować w postaci krzywych przedstawionych poniżej [J. Minczewski, Z. Marczenko 1987 str. 331]
Zastosowanie polarografii w analizie chemicznej
Polarografia jest szeroko stosowana w różnych dziedzinach analizy chemicznej. Jedną z głównych dziedzin jest analiza wód, w której polarografia jest wykorzystywana do oznaczania stężeń metali ciężkich. Metoda ta pozwala na precyzyjne i czułe oznaczanie zawartości metali takich jak ołów, rtęć czy kadm w próbkach wody. Ponadto, polarografia znajduje zastosowanie w badaniu aktywności enzymów. Dzięki tej technice można monitorować reakcje enzymatyczne i określić ich kinetykę. Ponadto, polarografia może być stosowana do monitorowania procesów elektrochemicznych w reakcjach redoks. Pozwala to na badanie mechanizmów reakcji i kontrolę przebiegu procesów elektrochemicznych. Istnieją również inne przykłady zastosowań polarografii w analizie chemicznej, takie jak oznaczanie stężeń substancji farmaceutycznych czy analiza żywności.
Polarografia posiada wiele zalet jako metoda analizy chemicznej. Przede wszystkim, jest to metoda czuła i precyzyjna, co pozwala na dokładne oznaczanie stężeń badanych substancji. Ponadto, polarografia jest stosunkowo prosta i szybka, co umożliwia jej szerokie zastosowanie w laboratoriach. Elektrody rtęciowe, wykorzystywane w tej technice, charakteryzują się wysoką reaktywnością i stabilnością, co przekłada się na dokładność pomiarów. Ponadto, polarografia umożliwia analizę substancji o różnej reaktywności elektrochemicznej, co czyni ją wszechstronną i elastyczną metodą.
Pomimo wielu zalet, polarografia ma również pewne ograniczenia. Jednym z głównych ograniczeń jest konieczność stosowania elektrod rtęciowych. Elektrody te są trujące i wymagają odpowiedniej obsługi. Ponadto, zakres pracy elektrody rtęciowej jest ograniczony, co może utrudniać analizę niektórych substancji. Istnieją także trudności z analizą substancji o niskiej reaktywności elektrochemicznej, które mogą nie wykazywać odpowiednich sygnałów polarograficznych.
Rozwinięcie techniki woltamperometrii
Woltamperometria jest techniką elektrochemiczną, która opiera się na pomiarze prądu przepływającego przez elektrodę w zależności od napięcia zastosowanego między elektrodą pracującą a elektrodą porównawczą. Głównym założeniem woltamperometrii jest analiza substancji elektroaktywnych, które wykazują reakcje elektrochemiczne. Technika ta opiera się na zasadzie, że prąd elektrochemiczny jest proporcjonalny do stężenia badanej substancji.
W woltamperometrii, elektroda pracująca jest elektrodą, na której zachodzi reakcja elektrochemiczna analizowanej substancji. Elektroda porównawcza pełni rolę odniesienia, umożliwiając pomiar prądu w stosunku do elektrody pracującej. Różnice między tymi elektrodami obejmują różnicę w potencjale elektrody oraz materiał, z którego są wykonane.
Woltamperometria znajduje zastosowanie w wielu dziedzinach analizy chemicznej. Przykładowo, może być wykorzystana do oznaczania stężenia substancji elektroaktywnych w próbkach żywności, farmaceutyków czy środowiskowych. Dzięki precyzyjnym pomiarom prądu, można dokładnie określić zawartość badanych substancji. Ponadto, woltamperometria umożliwia badanie kinetyki reakcji elektrochemicznych, co jest istotne w kontekście zrozumienia i kontrolowania procesów chemicznych.
Podobnie jak w przypadku polarografii, również woltamperometria ma pewne ograniczenia. Jednym z nich jest konieczność analizy substancji elektroaktywnych, co wyklucza możliwość badania substancji nieelektroaktywnych. Ponadto, technika ta wymaga odpowiedniego przygotowania elektrod i odpowiednich warunków eksperymentalnych, co może stanowić pewne trudności w praktyce.
Bibliografia
- Encyklopedia Techniki, podstawy techniki, wydanie drugie-zmienione, Wydawnictwo Naukowo-Techniczne, Warszawa 1994
- Encyklopedia Techniki, materiałoznawstwo, Wydawnictwo Naukowo-Techniczne, Warszawa 1969
- J. Minczewski, Z. Marczenko Chemia Analityczna Tom III – Analiza Instrumentalna, wydanie czwarte, Wydawnictwo PWN, Warszawa 1987
- K. Pigoń, Z. Ruziewicz, Chemia Fizyczna Cześć I, w wydanie IV poprawione, Wydawnictwo PWN, Warszawa 1993
- W.W. Kubiak, R. Piech, Wstęp do polarografii i woltamperometrii, AGH, online.
Autor: Mateusz Stępień