Schemat Bernoulliego

Z Encyklopedia Zarządzania
Wersja z dnia 11:06, 19 maj 2020 autorstwa Sw (dyskusja | edycje) (Infobox update)
(różn.) ← poprzednia wersja | przejdź do aktualnej wersji (różn.) | następna wersja → (różn.)
Schemat Bernoulliego
Polecane artykuły


Schemat Bernoulliego prób nazywamy doświadczenie polegające na -krotnym powtórzeniu ustalonej próby Barnoulliego, przy założeniu, że wynik każdej próby nie zależy od wyników prób poprzednich i nie wpływa na wyniki następnych. "Jeżeli rezultatem danego zdarzenia losowego może być tylko sukses albo porażka, wówczas takie doświadczenie nazywamy doświadczeniem Bernoulliego.Liczba sukcesów w jednym doświadczeniu Bernoulliego może wynosić 1 albo 0 i nazywana jest zmienną losową zero-jedynkową."(Aczel A.P. Sounderpandian J. 2018,) Ogólnie i prosto rzecz ujmując Schemat Bernoulliego przedstawia sytuację, gdy:

  1. Robimy doświadczenie, w którym są możliwe tylko dwa wyniki. Jeden z nich będzie sukcesem, a drugi nazwiemy porażką.
  2. Doświadczenie to można powtórzyć wielokrotnie be zmiany założonych warunków.

Prawdopodobieństwo tego, że w schemacie Barnoulliego o próbach sukces otrzyma się dokładnie razy jest równe:

gdzie:

, i

- prawdopodobieństwo sukcesu w jednej próbie

- prawdopodobieństwo porażki w jednej próbie

Próba Bernoulliego

Próbą Bernoulliego nazywamy doświadczenie losowe, w którym możliwe są tylko dwa wyniki, będące zdarzeniami przeciwnymi. Jeden z wyników nazywa się sukcesem, a drugi porażką. Pośród doświadczeń wieloetapowych na dużą uwagę zasługują te polegające na n-krotnym powtórzeniu, które są powtarzane w tych samych warunkach i są od siebie niezależne. Kończą się one tylko jednym wynikiem spośród dwóch. Najlepszymi i najprostszymi przykładami są próby Bernoulliego może być zwykły rzut monetą lub zakup losu na loterii. W pierwszym jak i drugim przypadku możliwe są tylko dwie opcje, a mianowicie orzeł lub reszka oraz los wygrany lub przegrany. Bernoulli podjął badania nad losowymi zdarzeniami. Podjął się także opracowywaniem matematycznych zagadnień, które z dowolnego przedsięwzięcia z którym idzie ryzyko pozwalają oszacować korzyści w danej sytuacji.

Najbardziej prawdopodobna liczba sukcesów w schemacie Bernoulliego.

Jeżeli w schemacie prób Bernoulliego liczba :

  • nie jest liczbą całkowitą, to najbardziej prawdopodobną liczbą sukcesów jest największa liczba całkowita mniejsza od
  • jest liczbą całkowitą, to najbardziej prawdopodobne liczby sukcesów są równe: i

Wariancja zmiennej losowej X o rozkładzie dwumianowym (rozkładzie Bernoulliego, rozkładzie binomialnym) podana jest wzorem:

Wartość oczekiwana zmiennej losowej X o rozkładzie dwumianowym (rozkładzie Bernoulliego, rozkładzie binomialnym) podana jest wzorem:

Moment centralny zmiennej losowej X o rozkładzie dwumianowym (rozkładzie Bernoulliego, rozkładzie binomialnym)podana jest wzorem:

Dystrybuanta zmiennej losowej o rozkładzie dwumianowym podana jest wzorem:


Funkcja rozkładu dwumianowego (rozkładu Bernoulliego) zależy od dwóch parametrów: liczby doświadczeń ORAZ prawdopodobieństwa sukcesu . W zależności od wielkości wcześniejszych parametrów zmienia się kształt funkcji rozkładu prawdopodobieństwa.:

  • dla rozkład dwumianowy jest symetryczny,
  • dla rozkład jest asymetryczny,
  • dla rozkład jest prawostronnie asymetryczny,
  • dla rozkład jest lewostronnie asymetryczny,

Bibliografia

Autor: Agnieszka Klozińska, Agnieszka Czyszczoń