Prawdopodobieństwo warunkowe

Z Encyklopedia Zarządzania
Wersja z dnia 17:39, 12 paź 2023 autorstwa Sw (dyskusja | edycje) (Dodanie MetaData Description)
Prawdopodobieństwo warunkowe
Polecane artykuły


Prawdopodobieństwo warunkowe ( względne ) występuje, gdy mamy do czynienia ze zdarzeniem A, którego prawdopodobieństwo zależy od zdarzenia B.
Zdarzenia A oraz B nazywamy wtedy zdarzeniami zależnymi. (Sobczyk M. 2002, s. 82)

Prawdopodobieństwo warunkowe zdarzenia A przy założeniu, że zaszło zdarzenie B, oznaczane jest symbolem P (A \ B) i wyraża się wzorem:

P (A \ B) = Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \frac{p \left (A \cap B \right)}{p \left (B \right)}}

Prawdopodobieństwo warunkowe określa szansę zajęcia jakiegoś zdarzenia, gdy wiadomo, jakie zdarzenia już zaszły. (Siwek E. 2002)

Prawdopodobieństwo P (A\B) jest naogół różne od prawdopodobieństwa (bezwarunkowego lub apriori) zdarzenia A.
W pewnych przypadkach jednak informacja o zajściu zdarzenia B nie ma wpływu na prawdopodobieństwo zdarzenia A, tj.

P (A\B)= P (A)

Otrzymujemy wówczas:

P (A i B) = Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle P\left (A\right)P\left (B\right)}

TL;DR

Prawdopodobieństwo warunkowe występuje, gdy prawdopodobieństwo zdarzenia A zależy od zdarzenia B. Prawdopodobieństwo warunkowe określa szansę zajścia zdarzenia, gdy wiadomo, jakie zdarzenia już zaszły. Przykładem jest prawdopodobieństwo uzyskania określonej liczby punktów w grze. Wzór Bayesa pozwala obliczyć prawdopodobieństwo warunkowe dla różnych hipotez.

Przykłady

Przykład 1

Załóżmy, że pomyślne ukończenie gry (wygrana) uzależnione jest od uzyskania 11 punktów w dwóch kolejnych rzutach
(lub dwoma kostkami jednocześnie). Jakie jest prawdopodobieństwo osiągnięcia takiego wyniku?
W pierwszym rzucie dwa wyniki nie przekreślają szans uzyskania potrzebnej liczby punktów: są to liczby 5 i 6. Prawdopodobieństwo
uzyskania jednej z nich wynosi:

Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \left (\frac{1}{6}\right) + \left (\frac{1}{6}\right)= \left (\frac{1}{3}\right)}

Liczba punktów, które musimy uzyskać w drugim rzucie, aby spełnione zostało przyjęte założenie, jest już ściśle uwaunkowana wynikiem
uzyskanym w pierwszym rzucie (mamy więc do czynienia z prawdopodobieństwiem warunkowym).
Prawdopodobieństwo warunkowe zdarzenia B przy założeniu, że wystąpiło zdarzenie A, oznaczymy symbolem Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle P\left (B\setminus A\right)} .
Tak więc w przypadku uzyskania w pierwszym rzucie 5 punktów, w drugim jedynie wyrzucenie 6 punktów da nam potrzebną sumę punktów.
I odwrotnie, jeśli w pierwszym rzucie uzyskamy 6 punktów, to w drugim jedynie wyrzucenie 5 punktów odpowiada przyjętemu założeniu.
A zatem prawdopodobieństwo uzyskania 11 punktów w dwóch kolejnych rzutach kostką wynosi:

Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \left (\frac{1}{3}\right) \left (\frac{1}{6}\right)= \left (\frac{1}{18}\right)}

Przykład 2

Dzieci miały zaopatrzyć łódkę taty w wodę mineralną przed jego wyjazdem z kolegą na ryby. W domu byłby dwie skrzynki: jedna z wodą
mineralną, a druga z lemoniadą. Czteroletni Jacek przyniósł 3 butelki, a młodsza o rok agatka dwie. Wyjmując butelkę, już na jeziorze, tata
zobaczył, że woda zmyła z niej nalepkę. Kolega taty zauważył, że wyjęta butelka wygląda tak samo, jak butelka lemoniady.
Z jaki prawdopodobieństwem panowie napiją się wody mineralnej, jeżeli prawd., że Agatka przyniosła wodę, a nie lemoniadę, wynosi Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \frac{1}{2}}
natomiast w przypadku Jacka prawdopodobieństwo to wynosi Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \frac{3}{4}}

rozwiązanie

Dzieci chciały przynieść wodę, a nie lemoniadę więc każde wzięło wszystkie swoje butelki z jednej skrzynki. Niech A oznacza, że panowie
trafili na wodę. Przyjmiemy hipotezę H, że wyjęta butelka jest jedną z przyniesionych przez Jacka i zastosujemy wzór:

P (A)= P (H)P (A\H) + P (H')P (A\H')

Mamy:

P (A\ H)=(Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \frac{3}{4}} ) i P (A\ H')=(Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \frac{1}{2}} )

Teraz obliczamy:

P (A)=(Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \frac{3}{5}} )(Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \frac{3}{4}} )+(Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \frac{2}{5}} )(Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \frac{1}{2}} )=Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \left (\frac{13}{20}\right)}

Wzór Bayesa

Wzór ten wyraża prawdopodobieństwo warunkowe Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle P\left (H_1\setminus A\right)} każdego z wzajemnie niezależnych zdarzeń Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle H_1, H_2, H_3,... H_n} .,
o dodatnich prawdopodobieństwach, których suma jest całą przestrzenią zdarzeń elementarnych względem zdarzenia A o dodatnim prawdopodob.

Wiemy, że

P (Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle H_1} \ A) = P (Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle H_1} ) Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \frac{P\left (A\setminus H_1\right)}{P\left (A\right)}}

Zastępując prawdopodobieństwo P (A) w mianowniku ostatniego ułamka przez:

P (A)= P (Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle H_1} )P (A\Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle H_1} )+P (Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle H_2} )P (A\Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle H_2} )+.... +P (Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle H_n} )P (A\ Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle H_n} )

otrzymujemy:

P (Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle H_1} \A)= Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \frac{P\left (H_1\right) P (A\setminus H_1)}{P (H_1)P (A\setminus H_1)+P\left (H_2\right)P\left (A\setminus H_2\right)+.... +P\left (H_n\right)P\left (A\setminus H_n\right)}}

zwany wzorem Bayesa. Wzór ten pozwala oliczyć prawdopodobieństwo warunkowe hipotezy Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle H_1} , w doświadczeniu, w którym
zaszło zdarzenie A. Analogiczne związki zachodzą również dla pozostałych hipotez Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle H_2, H_3,... H_n} .
Można z nich obliczyć prawdopodobieństwa warunkowe przyjętych wcześniej hipotez na podstawie wyniku doświadczenia po jego przeprowadzeniu. (Siwek E. 2002)

Bibliografia

  • Durka P. J. (2002) Wstęp do współczesnej statystyki, Wydawnictwo Adamantan, Warszawa
  • Kornacki J. (2006) Statystyka dla studentów kierunków technicznych i przyrodniczych (2006), Wydawnictwo Naukowo - Techniczne, Warszawa
  • Siwek E. (2002) Słownik encyklopedyczny, Cykada, Katowice
  • Sobczyk M. (2002) Statystyka, Wydawnictwo Naukowe PWN, Warszawa
  • Sobczyk M. (2010) Statystyka opisowa, Wydawnictwo C. H. Beck, Warszawa
  • Witkowski B. (red.) (2018) Statystyka w zarządzaniu., Wydawnictwo Naukowe PWN, Warszawa
  • Zieliński R. (2004) Siedem wykładów wprowadzających do statystyki matematycznej, Państwowe Wydawnictwo Naukowe, Warszawa

Autor: Anna Dziadosz, Bernadeta Nowacka