Prawdopodobieństwo warunkowe

Z Encyklopedia Zarządzania
Wersja z dnia 15:30, 2 lis 2023 autorstwa Sw (dyskusja | edycje) (Czyszczenie tekstu)
Prawdopodobieństwo warunkowe
Polecane artykuły

Prawdopodobieństwo warunkowe ( względne ) występuje, gdy mamy do czynienia ze zdarzeniem A, którego prawdopodobieństwo zależy od zdarzenia B.

Zdarzenia A oraz B nazywamy wtedy zdarzeniami zależnymi. (Sobczyk M. 2002, s. 82)

Prawdopodobieństwo warunkowe zdarzenia A przy założeniu, że zaszło zdarzenie B, oznaczane jest symbolem P (A \ B) i wyraża się wzorem:

P (A \ B) =

Prawdopodobieństwo warunkowe określa szansę zajęcia jakiegoś zdarzenia, gdy wiadomo, jakie zdarzenia już zaszły (Siwek E. 2002)

Prawdopodobieństwo P (A\B) jest naogół różne od prawdopodobieństwa (bezwarunkowego lub apriori) zdarzenia A.

W pewnych przypadkach jednak informacja o zajściu zdarzenia B nie ma wpływu na prawdopodobieństwo zdarzenia A, tj.

P (A\B)= P (A)

Otrzymujemy wówczas:

P (A i B) =

TL;DR

Prawdopodobieństwo warunkowe występuje, gdy prawdopodobieństwo zdarzenia A zależy od zdarzenia B. Prawdopodobieństwo warunkowe określa szansę zajścia zdarzenia, gdy wiadomo, jakie zdarzenia już zaszły. Przykładem jest prawdopodobieństwo uzyskania określonej liczby punktów w grze. Wzór Bayesa pozwala obliczyć prawdopodobieństwo warunkowe dla różnych hipotez.

Przykłady

Przykład 1

Załóżmy, że pomyślne ukończenie gry (wygrana) uzależnione jest od uzyskania 11 punktów w dwóch kolejnych rzutach

(lub dwoma kostkami jednocześnie). Jakie jest prawdopodobieństwo osiągnięcia takiego wyniku?

W pierwszym rzucie dwa wyniki nie przekreślają szans uzyskania potrzebnej liczby punktów: są to liczby 5 i 6. Prawdopodobieństwo

uzyskania jednej z nich wynosi:

Liczba punktów, które musimy uzyskać w drugim rzucie, aby spełnione zostało przyjęte założenie, jest już ściśle uwaunkowana wynikiem

uzyskanym w pierwszym rzucie (mamy więc do czynienia z prawdopodobieństwiem warunkowym).

Prawdopodobieństwo warunkowe zdarzenia B przy założeniu, że wystąpiło zdarzenie A, oznaczymy symbolem .

Tak więc w przypadku uzyskania w pierwszym rzucie 5 punktów, w drugim jedynie wyrzucenie 6 punktów da nam potrzebną sumę punktów.

I odwrotnie, jeśli w pierwszym rzucie uzyskamy 6 punktów, to w drugim jedynie wyrzucenie 5 punktów odpowiada przyjętemu założeniu.

A zatem prawdopodobieństwo uzyskania 11 punktów w dwóch kolejnych rzutach kostką wynosi:

Przykład 2

Dzieci miały zaopatrzyć łódkę taty w wodę mineralną przed jego wyjazdem z kolegą na ryby. W domu byłby dwie skrzynki: jedna z wodą

mineralną, a druga z lemoniadą. Czteroletni Jacek przyniósł 3 butelki, a młodsza o rok agatka dwie. Wyjmując butelkę, już na jeziorze, tata

zobaczył, że woda zmyła z niej nalepkę. Kolega taty zauważył, że wyjęta butelka wygląda tak samo, jak butelka lemoniady.

Z jaki prawdopodobieństwem panowie napiją się wody mineralnej, jeżeli prawd., że Agatka przyniosła wodę, a nie lemoniadę, wynosi

natomiast w przypadku Jacka prawdopodobieństwo to wynosi

rozwiązanie

Dzieci chciały przynieść wodę, a nie lemoniadę więc każde wzięło wszystkie swoje butelki z jednej skrzynki. Niech A oznacza, że panowie

trafili na wodę. Przyjmiemy hipotezę H, że wyjęta butelka jest jedną z przyniesionych przez Jacka i zastosujemy wzór:

P (A)= P (H)P (A\H) + P (H')P (A\H')

Mamy:

P (A\ H)=() i P (A\ H')=()

Teraz obliczamy:

P (A)=()()+()()=

Wzór Bayesa

Wzór ten wyraża prawdopodobieństwo warunkowe każdego z wzajemnie niezależnych zdarzeń .,

o dodatnich prawdopodobieństwach, których suma jest całą przestrzenią zdarzeń elementarnych względem zdarzenia A o dodatnim prawdopodob.

Wiemy, że

P (\ A) = P ()

Zastępując prawdopodobieństwo P (A) w mianowniku ostatniego ułamka przez:

P (A)= P ()P (A\)+P ()P (A\)+.... +P ()P (A\ )

otrzymujemy:

P (\A)=

zwany wzorem Bayesa. Wzór ten pozwala oliczyć prawdopodobieństwo warunkowe hipotezy , w doświadczeniu, w którym

zaszło zdarzenie A. Analogiczne związki zachodzą również dla pozostałych hipotez .

Można z nich obliczyć prawdopodobieństwa warunkowe przyjętych wcześniej hipotez na podstawie wyniku doświadczenia po jego przeprowadzeniu (Siwek E. 2002)

Bibliografia

  • Durka P. J. (2002) Wstęp do współczesnej statystyki, Wydawnictwo Adamantan, Warszawa
  • Kornacki J. (2006) Statystyka dla studentów kierunków technicznych i przyrodniczych (2006), Wydawnictwo Naukowo - Techniczne, Warszawa
  • Siwek E. (2002) Słownik encyklopedyczny, Cykada, Katowice
  • Sobczyk M. (2002) Statystyka, Wydawnictwo Naukowe PWN, Warszawa
  • Sobczyk M. (2010) Statystyka opisowa, Wydawnictwo C. H. Beck, Warszawa
  • Witkowski B. (red.) (2018) Statystyka w zarządzaniu., Wydawnictwo Naukowe PWN, Warszawa
  • Zieliński R. (2004) Siedem wykładów wprowadzających do statystyki matematycznej, Państwowe Wydawnictwo Naukowe, Warszawa


Autor: Anna Dziadosz, Bernadeta Nowacka