Polarografia: Różnice pomiędzy wersjami

Z Encyklopedia Zarządzania
Nie podano opisu zmian
m (cleanup bibliografii i rotten links)
 
(Nie pokazano 9 wersji utworzonych przez 2 użytkowników)
Linia 1: Linia 1:
{{infobox4
'''Polarografia''' - analiza polarograficzna, woltamperometria, w której elektrodą wskaźnikową jest kroplowa kapiąca elektroda rtęciowa KER. Zaletą KER jest jej mała i stale odnawiająca się powierzchnia oraz łatwość jej polaryzacji płynącym przez nią prądem. Dzięki jej małym wymiarom prąd ten osiąga duże gęstości, a reakcje elektrodowe nie zmieniają praktycznie stężenia składników analizowanego roztworu. Elektroda ta może pracować w zakresie od - 2 do 0,2 V [''Encyklopedia Techniki'' 1994 s. 372]. Twórcą tej metody był laureat nagrody nobla w 1959 r. profesor Uniwersytetu w Pradze, J. Heyrovsky [J. Minczewski, Z. Marczenko 1987 s. 330].
|list1=
* Woltamperometria - [[technika]] analityczna, której podstawą jest [[pomiar]] zależności natężenie prądu - [[potencjał]] elektryczny w układzie elektrody pracującej i odniesienia zanurzonych w roztworze badanym zawierającym oznaczaną substancję i elektrolit podstawowy. Elektroda porównawcza (odniesienia) jest niepolaryzowana (np. elektroda kalomelowa), natomiast elektroda pracująca jest polaryzowaną obojętną. [W. W. Kubiak, R.Piech AGH]
<ul>
* KER - Kroplowa elektroda rtęciowa, stosowana w metodach polarograficznych.
<li>[[Kwasowość]]</li>
<li>[[Wykres Molliera]]</li>
<li>[[Kalorymetria]]</li>
<li>[[PH]]</li>
<li>[[Metoda Rossa]]</li>
<li>[[Kolorymetria]]</li>
<li>[[Ocena jakości]]</li>
<li>[[Defektoskopia ultradźwiękowa]]</li>
<li>[[Liofilizacja]]</li>
</ul>
}}
 
 
'''Polarografia''' analiza polarograficzna, woltamperometria, w której elektrodą wskaźnikową jest kroplowa kapiąca elektroda rtęciowa KER. Zaletą KER jest jej mała i stale odnawiająca się powierzchnia oraz łatwość jej polaryzacji płynącym przez nią prądem. Dzięki jej małym wymiarom prąd ten osiąga duże gęstości, a reakcje elektrodowe nie zmieniają praktycznie stężenia składników analizowanego roztworu. Elektroda ta może pracować w zakresie od -2 do 0,2 V [''Encyklopedia Techniki'' 1994 s. 372]. Twórcą tej metody był laureat nagrody nobla w 1959 r. profesor Uniwersytetu w Pradze, J. Heyrovsky [J. Minczewski, Z. Marczenko 1987 str. 330].
* Woltamperometria [[technika]] analityczna, której podstawą jest [[pomiar]] zależności natężenie prądu [[potencjał]] elektryczny w układzie elektrody pracującej i odniesienia zanurzonych w roztworze badanym zawierającym oznaczaną substancję i elektrolit podstawowy. Elektroda porównawcza (odniesienia) jest niepolaryzowana (np. elektroda kalomelowa), natomiast elektroda pracująca jest polaryzowaną obojętną. [W. W. Kubiak, R.Piech AGH]
* KER Kroplowa elektroda rtęciowa, stosowana w metodach polarograficznych.


Polarografia jest jedną z najczęściej stosowanych metod analizy chemicznej, polega ona na wyznaczaniu prądowo-potencjałowej charakterystyki elektrody, na której występują wyłącznie napięcia dyfuzyjne, (...) zanurzonej w analizowanym roztworze. Roztwór zawiera oznaczone związki w znacznym rozcieńczeniu (10<sup>−4</sup>-10<sup>−2</sup>mol*1<sup>−1</sup>) oraz nadmiar obojętnego elektrolitu o dużym napięciu rozkładu. Często stosowany jest 1-molowy Kcl.
Elektrolit ma za [[zadanie]] zmniejszyć opór roztworu, a jednocześnie nie dopuścić do wytworzenia się dodatkowego pola elektrycznego w warstwie dyfuzyjnej. Dzięki jego obecności oznaczane jony dostają się na powierzchnię elektrody jedynie w wyniku dyfuzji, jak tego wymaga teoria nadnapięcia dyfuzyjnego, nie zaś wędrówki w polu elektromagnetycznym [K. Pigoń, Z Ruziewicz 1993 str 297-298].


Polarografia jest jedną z najczęściej stosowanych metod analizy chemicznej, polega ona na wyznaczaniu prądowo-potencjałowej charakterystyki elektrody, na której występują wyłącznie napięcia dyfuzyjne, (...) zanurzonej w analizowanym roztworze. Roztwór zawiera oznaczone związki w znacznym rozcieńczeniu (10<sup>−4</sup>-10<sup>−2</sup>mol*1<sup>−1</sup>) oraz nadmiar obojętnego elektrolitu o dużym napięciu rozkładu. Często stosowany jest 1-molowy Kcl.
Polarograf - Jest to przyrząd stosowany w analizie polarograficznej, który w sposób ciągły rejestruje zmiany natężenia prądu płynącego przez naczynie elektrolitycznie w zależności od napięcia przyłożonego do układu elektrod [''Encyklopedia Techniki'' 1969 s. 218].
Elektrolit ma za [[zadanie]] zmniejszyć opór roztworu, a jednocześnie nie dopuścić do wytworzenia się dodatkowego pola elektrycznego w warstwie dyfuzyjnej. Dzięki jego obecności oznaczane jony dostają się na powierzchnię elektrody jedynie w wyniku dyfuzji, jak tego wymaga teoria nadnapięcia dyfuzyjnego, nie zaś wędrówki w polu elektromagnetycznym [K. Pigoń, Z Ruziewicz 1993 str 297-298].  


Polarograf – Jest to przyrząd stosowany w analizie polarograficznej, który w sposób ciągły rejestruje zmiany natężenia prądu płynącego przez naczynie elektrolitycznie w zależności od napięcia przyłożonego do układu elektrod [''Encyklopedia Techniki'' 1969 str. 218].
Jeżeli kroplową elektrodę rtęciową, połączoną według schematu wprowadzi się do elektrolitu nie ulegającego w zakresie przykładanych potencjałów reakcjom elektrochemicznym (np. kwasy, zasady i sole metali alkalicznych) oraz zawierające małe ilości zdolnych do redukcji kationów to zmiany natężenia prądu płynącego pomiędzy elektrodami, wywołane zmianami przykładanego napięcia można zilustrować w postaci krzywych przedstawionych poniżej [J. Minczewski, Z. Marczenko 1987 s. 331]


Jeżeli kroplową elektrodę rtęciową, połączoną według schematu wprowadzi się do elektrolitu nie ulegającego w zakresie przykładanych potencjałów reakcjom elektrochemicznym (np. kwasy, zasady i sole metali alkalicznych) oraz zawierające małe ilości zdolnych do redukcji kationów to zmiany natężenia prądu płynącego pomiędzy elektrodami, wywołane zmianami przykładanego napięcia można zilustrować w postaci krzywych przedstawionych poniżej [J. Minczewski, Z. Marczenko 1987 str. 331]
<google>n</google>
<google>text</google>


== Zastosowanie polarografii w analizie chemicznej ==
==Zastosowanie polarografii w analizie chemicznej==
Polarografia jest szeroko stosowana w różnych dziedzinach analizy chemicznej. Jedną z głównych dziedzin jest analiza wód, w której polarografia jest wykorzystywana do oznaczania stężeń metali ciężkich. [[Metoda]] ta pozwala na precyzyjne i czułe oznaczanie zawartości metali takich jak ołów, rtęć czy kadm w próbkach wody. Ponadto, polarografia znajduje zastosowanie w badaniu aktywności enzymów. Dzięki tej technice można monitorować reakcje enzymatyczne i określić ich kinetykę. Ponadto, polarografia może być stosowana do monitorowania procesów elektrochemicznych w reakcjach redoks. Pozwala to na badanie mechanizmów reakcji i kontrolę przebiegu procesów elektrochemicznych. Istnieją również inne przykłady zastosowań polarografii w analizie chemicznej, takie jak oznaczanie stężeń substancji farmaceutycznych czy analiza żywności.
Polarografia jest szeroko stosowana w różnych dziedzinach analizy chemicznej. Jedną z głównych dziedzin jest analiza wód, w której polarografia jest wykorzystywana do oznaczania stężeń metali ciężkich. [[Metoda]] ta pozwala na precyzyjne i czułe oznaczanie zawartości metali takich jak ołów, rtęć czy kadm w próbkach wody. Ponadto, polarografia znajduje zastosowanie w badaniu aktywności enzymów. Dzięki tej technice można monitorować reakcje enzymatyczne i określić ich kinetykę. Ponadto, polarografia może być stosowana do monitorowania procesów elektrochemicznych w reakcjach redoks. Pozwala to na badanie mechanizmów reakcji i kontrolę przebiegu procesów elektrochemicznych. Istnieją również inne przykłady zastosowań polarografii w analizie chemicznej, takie jak oznaczanie stężeń substancji farmaceutycznych czy analiza żywności.


Linia 35: Linia 19:
Pomimo wielu zalet, polarografia ma również pewne ograniczenia. Jednym z głównych ograniczeń jest konieczność stosowania elektrod rtęciowych. Elektrody te są trujące i wymagają odpowiedniej obsługi. Ponadto, [[zakres]] pracy elektrody rtęciowej jest ograniczony, co może utrudniać analizę niektórych substancji. Istnieją także trudności z analizą substancji o niskiej reaktywności elektrochemicznej, które mogą nie wykazywać odpowiednich sygnałów polarograficznych.
Pomimo wielu zalet, polarografia ma również pewne ograniczenia. Jednym z głównych ograniczeń jest konieczność stosowania elektrod rtęciowych. Elektrody te są trujące i wymagają odpowiedniej obsługi. Ponadto, [[zakres]] pracy elektrody rtęciowej jest ograniczony, co może utrudniać analizę niektórych substancji. Istnieją także trudności z analizą substancji o niskiej reaktywności elektrochemicznej, które mogą nie wykazywać odpowiednich sygnałów polarograficznych.


== Rozwinięcie techniki woltamperometrii ==
==Rozwinięcie techniki woltamperometrii==
Woltamperometria jest techniką elektrochemiczną, która opiera się na pomiarze prądu przepływającego przez elektrodę w zależności od napięcia zastosowanego między elektrodą pracującą a elektrodą porównawczą. Głównym założeniem woltamperometrii jest analiza substancji elektroaktywnych, które wykazują reakcje elektrochemiczne. Technika ta opiera się na zasadzie, że prąd elektrochemiczny jest proporcjonalny do stężenia badanej substancji.
Woltamperometria jest techniką elektrochemiczną, która opiera się na pomiarze prądu przepływającego przez elektrodę w zależności od napięcia zastosowanego między elektrodą pracującą a elektrodą porównawczą. Głównym założeniem woltamperometrii jest analiza substancji elektroaktywnych, które wykazują reakcje elektrochemiczne. Technika ta opiera się na zasadzie, że prąd elektrochemiczny jest proporcjonalny do stężenia badanej substancji.


Linia 43: Linia 27:


Podobnie jak w przypadku polarografii, również woltamperometria ma pewne ograniczenia. Jednym z nich jest konieczność analizy substancji elektroaktywnych, co wyklucza możliwość badania substancji nieelektroaktywnych. Ponadto, technika ta wymaga odpowiedniego przygotowania elektrod i odpowiednich warunków eksperymentalnych, co może stanowić pewne trudności w praktyce.
Podobnie jak w przypadku polarografii, również woltamperometria ma pewne ograniczenia. Jednym z nich jest konieczność analizy substancji elektroaktywnych, co wyklucza możliwość badania substancji nieelektroaktywnych. Ponadto, technika ta wymaga odpowiedniego przygotowania elektrod i odpowiednich warunków eksperymentalnych, co może stanowić pewne trudności w praktyce.
{{infobox5|list1={{i5link|a=[[Kwasowość]]}} &mdash; {{i5link|a=[[Wykres Molliera]]}} &mdash; {{i5link|a=[[Kalorymetria]]}} &mdash; {{i5link|a=[[PH]]}} &mdash; {{i5link|a=[[Metoda Rossa]]}} &mdash; {{i5link|a=[[Kolorymetria]]}} &mdash; {{i5link|a=[[Ocena jakości]]}} &mdash; {{i5link|a=[[Defektoskopia ultradźwiękowa]]}} &mdash; {{i5link|a=[[Liofilizacja]]}} }}


==Bibliografia==
==Bibliografia==
* ''Encyklopedia Techniki, podstawy techniki'', wydanie drugie-zmienione, Wydawnictwo Naukowo-Techniczne, Warszawa 1994
<noautolinks>
* ''Encyklopedia Techniki, [[materiałoznawstwo]]'', Wydawnictwo Naukowo-Techniczne, Warszawa 1969
* Gronkowska M. (red.) (1994), ''Encyklopedia techniki podstawy techniki'', Wydawnictwo Naukowo-Techniczne, Warszawa
* J. Minczewski, Z. Marczenko ''Chemia Analityczna Tom III Analiza Instrumentalna'', wydanie czwarte, Wydawnictwo PWN, Warszawa 1987
* Kubiak W., Piech R., ''Wstęp do polarografii i woltamperometrii'', AGH, Kraków
* K. Pigoń, Z. Ruziewicz, ''Chemia Fizyczna Cześć I, w wydanie IV poprawione'', Wydawnictwo PWN, Warszawa 1993
* Minczewski J., Marczenko Z. (1987), ''Chemia Analityczna Tom III - Analiza Instrumentalna'', Wydawnictwo PWN, Warszawa
* W.W. Kubiak, R. Piech, ''Wstęp do polarografii i woltamperometrii'', AGH, online.
* Pigoń K., Ruziewicz Z. (1993), ''Chemia Fizyczna'', Wydawnictwo PWN, Warszawa
 
* Zienkowicz J. i in. (red.) (1979), ''Encyklopedia technik. Materiałoznawstwo'', Wydawnictwo Naukowo- Techniczne, Warszawa
[[Kategoria:Towaroznawstwo]]
</noautolinks>
[[Kategoria:Metody oceny produktów]]


{{a|Mateusz Stępień}}
{{a|Mateusz Stępień}}


{{#metamaster:description|Polarografia - metoda analizy chemicznej oparta na pomiarze charakterystyki elektrody rtęciowej. Stosowana do wyznaczania stężenia analitów. Opracowana przez laureata Nagrody Nobla J. Heyrovsky'ego.}}
{{#metamaster:description|Polarografia - metoda analizy chemicznej oparta na pomiarze charakterystyki elektrody rtęciowej. Stosowana do wyznaczania stężenia analitów. Opracowana przez laureata Nagrody Nobla J. Heyrovsky'ego.}}

Aktualna wersja na dzień 22:59, 16 gru 2023

Polarografia - analiza polarograficzna, woltamperometria, w której elektrodą wskaźnikową jest kroplowa kapiąca elektroda rtęciowa KER. Zaletą KER jest jej mała i stale odnawiająca się powierzchnia oraz łatwość jej polaryzacji płynącym przez nią prądem. Dzięki jej małym wymiarom prąd ten osiąga duże gęstości, a reakcje elektrodowe nie zmieniają praktycznie stężenia składników analizowanego roztworu. Elektroda ta może pracować w zakresie od - 2 do 0,2 V [Encyklopedia Techniki 1994 s. 372]. Twórcą tej metody był laureat nagrody nobla w 1959 r. profesor Uniwersytetu w Pradze, J. Heyrovsky [J. Minczewski, Z. Marczenko 1987 s. 330].

  • Woltamperometria - technika analityczna, której podstawą jest pomiar zależności natężenie prądu - potencjał elektryczny w układzie elektrody pracującej i odniesienia zanurzonych w roztworze badanym zawierającym oznaczaną substancję i elektrolit podstawowy. Elektroda porównawcza (odniesienia) jest niepolaryzowana (np. elektroda kalomelowa), natomiast elektroda pracująca jest polaryzowaną obojętną. [W. W. Kubiak, R.Piech AGH]
  • KER - Kroplowa elektroda rtęciowa, stosowana w metodach polarograficznych.

Polarografia jest jedną z najczęściej stosowanych metod analizy chemicznej, polega ona na wyznaczaniu prądowo-potencjałowej charakterystyki elektrody, na której występują wyłącznie napięcia dyfuzyjne, (...) zanurzonej w analizowanym roztworze. Roztwór zawiera oznaczone związki w znacznym rozcieńczeniu (10−4-10−2mol*1−1) oraz nadmiar obojętnego elektrolitu o dużym napięciu rozkładu. Często stosowany jest 1-molowy Kcl. Elektrolit ma za zadanie zmniejszyć opór roztworu, a jednocześnie nie dopuścić do wytworzenia się dodatkowego pola elektrycznego w warstwie dyfuzyjnej. Dzięki jego obecności oznaczane jony dostają się na powierzchnię elektrody jedynie w wyniku dyfuzji, jak tego wymaga teoria nadnapięcia dyfuzyjnego, nie zaś wędrówki w polu elektromagnetycznym [K. Pigoń, Z Ruziewicz 1993 str 297-298].

Polarograf - Jest to przyrząd stosowany w analizie polarograficznej, który w sposób ciągły rejestruje zmiany natężenia prądu płynącego przez naczynie elektrolitycznie w zależności od napięcia przyłożonego do układu elektrod [Encyklopedia Techniki 1969 s. 218].

Jeżeli kroplową elektrodę rtęciową, połączoną według schematu wprowadzi się do elektrolitu nie ulegającego w zakresie przykładanych potencjałów reakcjom elektrochemicznym (np. kwasy, zasady i sole metali alkalicznych) oraz zawierające małe ilości zdolnych do redukcji kationów to zmiany natężenia prądu płynącego pomiędzy elektrodami, wywołane zmianami przykładanego napięcia można zilustrować w postaci krzywych przedstawionych poniżej [J. Minczewski, Z. Marczenko 1987 s. 331]

Zastosowanie polarografii w analizie chemicznej

Polarografia jest szeroko stosowana w różnych dziedzinach analizy chemicznej. Jedną z głównych dziedzin jest analiza wód, w której polarografia jest wykorzystywana do oznaczania stężeń metali ciężkich. Metoda ta pozwala na precyzyjne i czułe oznaczanie zawartości metali takich jak ołów, rtęć czy kadm w próbkach wody. Ponadto, polarografia znajduje zastosowanie w badaniu aktywności enzymów. Dzięki tej technice można monitorować reakcje enzymatyczne i określić ich kinetykę. Ponadto, polarografia może być stosowana do monitorowania procesów elektrochemicznych w reakcjach redoks. Pozwala to na badanie mechanizmów reakcji i kontrolę przebiegu procesów elektrochemicznych. Istnieją również inne przykłady zastosowań polarografii w analizie chemicznej, takie jak oznaczanie stężeń substancji farmaceutycznych czy analiza żywności.

Polarografia posiada wiele zalet jako metoda analizy chemicznej. Przede wszystkim, jest to metoda czuła i precyzyjna, co pozwala na dokładne oznaczanie stężeń badanych substancji. Ponadto, polarografia jest stosunkowo prosta i szybka, co umożliwia jej szerokie zastosowanie w laboratoriach. Elektrody rtęciowe, wykorzystywane w tej technice, charakteryzują się wysoką reaktywnością i stabilnością, co przekłada się na dokładność pomiarów. Ponadto, polarografia umożliwia analizę substancji o różnej reaktywności elektrochemicznej, co czyni ją wszechstronną i elastyczną metodą.

Pomimo wielu zalet, polarografia ma również pewne ograniczenia. Jednym z głównych ograniczeń jest konieczność stosowania elektrod rtęciowych. Elektrody te są trujące i wymagają odpowiedniej obsługi. Ponadto, zakres pracy elektrody rtęciowej jest ograniczony, co może utrudniać analizę niektórych substancji. Istnieją także trudności z analizą substancji o niskiej reaktywności elektrochemicznej, które mogą nie wykazywać odpowiednich sygnałów polarograficznych.

Rozwinięcie techniki woltamperometrii

Woltamperometria jest techniką elektrochemiczną, która opiera się na pomiarze prądu przepływającego przez elektrodę w zależności od napięcia zastosowanego między elektrodą pracującą a elektrodą porównawczą. Głównym założeniem woltamperometrii jest analiza substancji elektroaktywnych, które wykazują reakcje elektrochemiczne. Technika ta opiera się na zasadzie, że prąd elektrochemiczny jest proporcjonalny do stężenia badanej substancji.

W woltamperometrii, elektroda pracująca jest elektrodą, na której zachodzi reakcja elektrochemiczna analizowanej substancji. Elektroda porównawcza pełni rolę odniesienia, umożliwiając pomiar prądu w stosunku do elektrody pracującej. Różnice między tymi elektrodami obejmują różnicę w potencjale elektrody oraz materiał, z którego są wykonane.

Woltamperometria znajduje zastosowanie w wielu dziedzinach analizy chemicznej. Przykładowo, może być wykorzystana do oznaczania stężenia substancji elektroaktywnych w próbkach żywności, farmaceutyków czy środowiskowych. Dzięki precyzyjnym pomiarom prądu, można dokładnie określić zawartość badanych substancji. Ponadto, woltamperometria umożliwia badanie kinetyki reakcji elektrochemicznych, co jest istotne w kontekście zrozumienia i kontrolowania procesów chemicznych.

Podobnie jak w przypadku polarografii, również woltamperometria ma pewne ograniczenia. Jednym z nich jest konieczność analizy substancji elektroaktywnych, co wyklucza możliwość badania substancji nieelektroaktywnych. Ponadto, technika ta wymaga odpowiedniego przygotowania elektrod i odpowiednich warunków eksperymentalnych, co może stanowić pewne trudności w praktyce.


Polarografiaartykuły polecane
KwasowośćWykres MollieraKalorymetriaPHMetoda RossaKolorymetriaOcena jakościDefektoskopia ultradźwiękowaLiofilizacja

Bibliografia

  • Gronkowska M. (red.) (1994), Encyklopedia techniki podstawy techniki, Wydawnictwo Naukowo-Techniczne, Warszawa
  • Kubiak W., Piech R., Wstęp do polarografii i woltamperometrii, AGH, Kraków
  • Minczewski J., Marczenko Z. (1987), Chemia Analityczna Tom III - Analiza Instrumentalna, Wydawnictwo PWN, Warszawa
  • Pigoń K., Ruziewicz Z. (1993), Chemia Fizyczna, Wydawnictwo PWN, Warszawa
  • Zienkowicz J. i in. (red.) (1979), Encyklopedia technik. Materiałoznawstwo, Wydawnictwo Naukowo- Techniczne, Warszawa


Autor: Mateusz Stępień