Test t Studenta: Różnice pomiędzy wersjami

Z Encyklopedia Zarządzania
Nie podano opisu zmian
m (cleanup bibliografii i rotten links)
 
(Nie pokazano 25 wersji utworzonych przez 3 użytkowników)
Linia 1: Linia 1:
'''Test t- Studenta''' jest wykorzystywany w celu porównania grup, dla których mamy wyniki, czyli chcemy stwierdzić czy wyniki w jednej grupie są większe bądź mniejsze niż w drugiej grupie. Testu t- Studenta nie należy wykonywać dla więcej niż dwóch grup. Odpowiada on na pytanie czy średnie wartości badanych zmiennych w dwóch grupach różnią się od siebie statystycznie istotnie (M. Sobczyk 2007, s. 134-136).  
'''Test t - Studenta''' jest wykorzystywany w celu porównania grup, dla których mamy wyniki, czyli chcemy stwierdzić czy wyniki w jednej grupie są większe bądź mniejsze niż w drugiej grupie. Testu t - Studenta nie należy wykonywać dla więcej niż dwóch grup. Odpowiada on na pytanie czy średnie wartości badanych zmiennych w dwóch grupach różnią się od siebie statystycznie istotnie (M. Sobczyk 2007, s. 134-136).
 
==TL;DR==
Test t-Studenta jest wykorzystywany do porównywania wyników między dwiema grupami. Ma trzy rodzaje: dla prób niezależnych, dla prób zależnych i dla jednej próby. Test opiera się na założeniu rozkładu normalnego i podobności wariancji w grupach. Rozkład t-Studenta jest stosowany w statystyce i metrologii dla prób o małej liczebności. Test t-Studenta może być używany w różnych badaniach, takich jak porównywanie wpływów z różnych źródeł czy różnic między grupami społecznymi.


==Założenia testów t-Studenta==
==Założenia testów t-Studenta==
Założenie testów t-Studenta jest następujące (M. Sobczyk 2007, s. 134-136):  
Założenie testów t-Studenta jest następujące (M. Sobczyk 2007, s. 134-136):
# rozkład wyników zmiennej zależnej w badanych grupach jest zbliżony do rozkładu normalnego,
# rozkład wyników zmiennej zależnej w badanych grupach jest zbliżony do rozkładu normalnego,
# porównywane grupy są podobne pod kątem ilości badanych osób,
# porównywane grupy są podobne pod kątem ilości badanych osób,
# homogeniczność wariancji, tzn. wariancje w grupach badanych są do siebie podobne
# homogeniczność wariancji, tzn. wariancje w grupach badanych są do siebie podobne
# zmienna zależna powinna być mierzona na skali ilościowej
# zmienna zależna powinna być mierzona na skali ilościowej
Test t- Studenta jest '''testem parametrycznym''', czyli opiera się na obliczaniu wartości średniej i odchylenia standardowego. Posiadając zmienne mierzone w skali porządkowej czy nominalnej obliczenie wartości za pomocą t-Studenta nie jest możliwe. W tym przypadku powinien zostać zastosowany jego odpowiedni dla testów nieparametrycznych, a mianowicie test U Manna-Whitneya (M. Sobczyk 2007, s. 134-136).  
Test t - Studenta jest '''testem parametrycznym''', czyli opiera się na obliczaniu wartości średniej i odchylenia standardowego. Posiadając zmienne mierzone w skali porządkowej czy nominalnej obliczenie wartości za pomocą t-Studenta nie jest możliwe. W tym przypadku powinien zostać zastosowany jego odpowiedni dla testów nieparametrycznych, a mianowicie test U Manna-Whitneya (M. Sobczyk 2007, s. 134-136).


==Rodzaje testów==
==Rodzaje testów==
Istnieją trzy rodzaje testu t-Studenta (W. Malska 2015, s. 326):
Istnieją trzy rodzaje testu t-Studenta (W. Malska 2015, s. 326):
* '''dla prób niezależnych''' ocenia różnice między niezależnymi grupami np. między grupą kontrolną a eksperymentalną, kobietami a mężczyznami czy grupą starszych i młodszych. Aby wyniki wyszły prawidłowe należy mieć na uwadze takie czynniki jak: pomiar ilościowy zmiennej zależnej, zmienna niezależna powinna być dychotomiczna, rozkład w grupach powinien być normalny, wariancje oraz liczebność grup jest zbliżona. Porównanie grupy badanych następuje z wykorzystaniem testu zgodności chi-kwadrat (test Pearsona). Wzór dla prób niezależnych wygląda następująco (W. Malska 2015, s. 326):
* '''dla prób niezależnych''' - ocenia różnice między niezależnymi grupami np. między grupą kontrolną a eksperymentalną, kobietami a mężczyznami czy grupą starszych i młodszych. Aby wyniki wyszły prawidłowe należy mieć na uwadze takie czynniki jak: pomiar ilościowy zmiennej zależnej, zmienna niezależna powinna być dychotomiczna, rozkład w grupach powinien być normalny, wariancje oraz liczebność grup jest zbliżona. Porównanie grupy badanych następuje z wykorzystaniem testu zgodności chi-kwadrat (test Pearsona). Wzór dla prób niezależnych wygląda następująco (W. Malska 2015, s. 326):
<math>T=\frac{\bar{X_1}-\bar{X_2}}{S{x_1-x_2}}</math>  
<math>T=\frac{\bar{X_1}-\bar{X_2}}{S{x_1-x_2}}</math>
* '''dla prób zależnych''' Jest to klasyczny przykład testu wykonywanego przed i po zaistniałej zmianie. W odróżnieniu od testu dla prób niezależnych, bierze pod uwagę i ocenia te same grupy osób. Obserwacja musi odbyć się dwa razy, a badane próby są powiązane ze sobą. Próba ta zestawia ze sobą wynik i pierwszego i drugiego pomiaru dokonywanego na jednej zmiennej. Zmienna jest badana w odniesieniu do innych warunków, jakie zachodzą, jednakże z uwzględnieniem tej samej grupy badanych. Próba zależna wymaga zaistnienia określonych czynników: zmiennej zależnej w pomiarze ilościowym; rozkładu zmiennej, który jest normalny; zastosowania identycznej skali pomiaru przy obydwu pomiarach, normalność rozkładu różnic zmiennych (W. Malska 2015, s. 326): <math>T=\frac{\bar{D}}{S_D/\sqrt{n}}</math>
* '''dla prób zależnych''' - Jest to klasyczny przykład testu wykonywanego przed i po zaistniałej zmianie. W odróżnieniu od testu dla prób niezależnych, bierze pod uwagę i ocenia te same grupy osób. Obserwacja musi odbyć się dwa razy, a badane próby są powiązane ze sobą. Próba ta zestawia ze sobą wynik i pierwszego i drugiego pomiaru dokonywanego na jednej zmiennej. Zmienna jest badana w odniesieniu do innych warunków, jakie zachodzą, jednakże z uwzględnieniem tej samej grupy badanych. Próba zależna wymaga zaistnienia określonych czynników: zmiennej zależnej w pomiarze ilościowym; rozkładu zmiennej, który jest normalny; zastosowania identycznej skali pomiaru przy obydwu pomiarach, normalność rozkładu różnic zmiennych (W. Malska 2015, s. 326): <math>T=\frac{\bar{D}}{S_D/\sqrt{n}}</math>
* '''dla jednej próby''' test ten pozwala wyciągnąć wnioski z zestawienia: średniego wyniki dokonanego na jednej grupie osób poddanych w badaniu, z odchyleniem standardowym wynikającym z tego samego badania na tej samej, jednej grupie badanych. Obydwa te pomiary koreluje się z założoną na potrzeby tego badania wartością. Wartość ta może być przyjęta hipotetycznie lub można wynika z innych badań. Test jednej próby używany jest, kiedy dokonywany jest pomiar zmiennej o ile znajduje się ona na skali ilościowej i ma rozkład normalny (W. Malska 2015, s. 326): <math>T=\frac{\bar{X_1}-&mu;}{Sx_1}</math>
* '''dla jednej próby''' - test ten pozwala wyciągnąć wnioski z zestawienia: średniego wyniki dokonanego na jednej grupie osób poddanych w badaniu, z odchyleniem standardowym wynikającym z tego samego badania na tej samej, jednej grupie badanych. Obydwa te pomiary koreluje się z założoną na potrzeby tego badania wartością. Wartość ta może być przyjęta hipotetycznie lub można wynika z innych badań. Test jednej próby używany jest, kiedy dokonywany jest pomiar zmiennej o ile znajduje się ona na skali ilościowej i ma rozkład normalny (W. Malska 2015, s. 326): <math>T = \frac{\bar{X_1} - \mu}{Sx_1}</math>
 
<google>n</google>


==Rozkład t-Studenta==
==Rozkład t-Studenta==
'''Rozkład t-Studenta''' zwany również rozkładem t to model teoretyczny wykorzystywany do przybliżenia momentu pierwszego rzędu populacji o rozkładzie normalnym, przy niewielkiej wielkości próby oraz nieznanym odchyleniem standardowym. Jest to rozkład prawdopodobieństwa, który podaje wartość małej próby z populacji, posiadającej rozkład normalny i dla której brak jest informacji o odchyleniu standardowym. W przeciwieństwie do rozkładu normalnego rozkład t zależy jedynie od stopni swobody (M. Sobczyk 2007, s. 134-136).  
'''Rozkład t-Studenta''' zwany również rozkładem t to model teoretyczny wykorzystywany do przybliżenia momentu pierwszego rzędu populacji o rozkładzie normalnym, przy niewielkiej wielkości próby oraz nieznanym odchyleniem standardowym. Jest to rozkład prawdopodobieństwa, który podaje wartość małej próby z populacji, posiadającej rozkład normalny i dla której brak jest informacji o odchyleniu standardowym. W przeciwieństwie do rozkładu normalnego rozkład t zależy jedynie od stopni swobody (M. Sobczyk 2007, s. 134-136).


Rozkład t-Studenta jest stosowany w statystyce i metrologii. Opierają się na dwóch podstawowych twierdzeniach:
Rozkład t-Studenta jest stosowany w statystyce i metrologii. Opierają się na dwóch podstawowych twierdzeniach (M. Sobczyk 2007, s. 134-136):
# zmienne losowe <math>X_1,X_2,…X_n</math> mają taki sam rozkład prawdopodobieństwa, który jest rozkładem normalnym o średniej <math>m</math> i wariancji <math>&sigma;^2</math>. Wówczas zmienna <math>t</math> ma rozkład Studenta o <math>v=n-1</math> stopniach swobody.
# zmienne losowe <math>X_1,X_2,...,X_n</math> mają taki sam rozkład prawdopodobieństwa, który jest rozkładem normalnym o średniej <math>m</math> i wariancji <math>\sigma^2</math>. Wówczas zmienna <math>t</math> ma rozkład Studenta o <math>v=n-1</math> stopniach swobody,
# dwie próby o liczebności <math>n_1</math> oraz <math>n_2</math>, wartościach średnich <math>\bar{X_1}</math> oraz <math>\bar{X_2}</math> i wariancja określona z próby <math>s^2_1</math> oraz <math>s^2_2</math> wylosowane z populacji o jednakowym rozkładzie normalnym, powodują, że zmienna <math>t</math> ma rozkład Studenta o <math>v=n_1+n_2-2</math>
# dwie próby o liczebności <math>n_1</math> oraz <math>n_2</math>, wartościach średnich <math>\bar{X_1}</math> oraz <math>\bar{X_2}</math> i wariancja określona z próby <math>s^2_1</math> oraz <math>s^2_2</math> wylosowane z populacji o jednakowym rozkładzie normalnym, powodują, że zmienna <math>t</math> ma rozkład Studenta o <math>v=n_1+n_2-2</math>.


Rozkład ten jest wykorzystywany w testach parametrycznych, estymacji przedziałowej, wartości średnich i wariancji oraz testach istotności, gdy chodzi o próby z niewielką liczebnością, czyli gdy <math>n\leqslant30</math>. W przypadku metrologii rozkładu Studenta używa się do estymacji odchylenia standardowego. Jeśli chodzi o duże próby, gdzie <math>n\geqslant30</math> rozkład t-Studenta jest tożsamy z rozkładem normalnym, a dla mniejszych prób estymator odchylenia standardowego powinien zostać pomnożony przez wartość krytyczną rozkładu, gdzie liczba stopni swobody wynosi <math>v=n-1</math>, a poziom istotności przyjmuje wartość <math>&alpha;</math>. (M. Sobczyk 2007, s. 134-136).
Rozkład ten jest wykorzystywany w testach parametrycznych, estymacji przedziałowej, wartości średnich i wariancji oraz testach istotności, gdy chodzi o próby z niewielką liczebnością, czyli gdy <math>n \leqslant 30</math>. W przypadku metrologii rozkładu Studenta używa się do estymacji odchylenia standardowego. Jeśli chodzi o duże próby, gdzie <math>n \geqslant 30</math> rozkład t-Studenta jest tożsamy z rozkładem normalnym, a dla mniejszych prób estymator odchylenia standardowego powinien zostać pomnożony przez wartość krytyczną rozkładu, gdzie liczba stopni swobody wynosi <math>v=n-1</math>, a poziom istotności przyjmuje wartość <math>\alpha</math> (M. Sobczyk 2007, s. 134-136).


==Przykłady zastosowania testu t-Studenta==
==Przykłady zastosowania testu t-Studenta==
'''Test t-Studenta''' można wykorzystać w badaniu różnych zjawisk w zależności od posiadanych danych. Poniżej zostały przedstawione przykłady problemów badawczych w odniesieniu do rodzajów testów t-Studenta:
'''Test t-Studenta''' można wykorzystać w badaniu różnych zjawisk w zależności od posiadanych danych. Poniżej zostały przedstawione przykłady problemów badawczych w odniesieniu do rodzajów testów t-Studenta (R. Magiera 2018, s. 226):
# '''dla jednej próby'''
# '''dla jednej próby'''
''Czy wpływy ze sztabów WOŚP w woj. Lubelskim różnią się od średniej z ubiegłego roku?''
''Czy wpływy ze sztabów WOŚP w woj. Lubelskim różnią się od średniej z ubiegłego roku?''
''Czy inteligencja studentów z UEK różni się od średniej w populacji?''
''Czy inteligencja studentów z UEK różni się od średniej w populacji?''
# '''dla prób skorelowanych (zależnych)'''
# '''dla prób skorelowanych (zależnych)'''
''Czy słuchanie muzyki podczas rozwiązywania zadań wydłuża czas znalezienia rozwiązania?''
''Czy słuchanie muzyki podczas rozwiązywania zadań wydłuża czas znalezienia rozwiązania?''
''Czy istnieje różnica między wysokością zarobków na początku zatrudnienia a wysokością zarobków po 5 latach pracy?''  
 
''Czy istnieje różnica między wysokością zarobków na początku zatrudnienia a wysokością zarobków po 5 latach pracy?''
# '''dla prób nieskorelowanych (niezależnych)'''
# '''dla prób nieskorelowanych (niezależnych)'''
''Czy kobiety i mężczyźni różnią się liczbą podejść do egzaminy na prawo jazdy?''
''Czy kobiety i mężczyźni różnią się liczbą podejść do egzaminy na prawo jazdy?''
''Czy mieszkańcy miast i wsi różnią się od siebie wysokością zarobków?''  
 
''Czy mieszkańcy miast i wsi różnią się od siebie wysokością zarobków?''
 
{{infobox5|list1={{i5link|a=[[Analiza regresji]]}} &mdash; {{i5link|a=[[Rozkład t-Studenta]]}} &mdash; {{i5link|a=[[Przedział ufności]]}} &mdash; {{i5link|a=[[Współczynnik determinacji]]}} &mdash; {{i5link|a=[[Rozkład normalny]]}} &mdash; {{i5link|a=[[Średnia]]}} &mdash; {{i5link|a=[[Próba]]}} &mdash; {{i5link|a=[[Współczynnik korelacji rang Spearmana]]}} &mdash; {{i5link|a=[[Test zgodności chi-kwadrat]]}} }}


==Bibliografia==
==Bibliografia==
* Bobowski Z. (2004), ''Wybrane metody statystyki opisowej w wnioskowania statystycznego'', Wydawnictwo WWSZiP, s. 137-157.
<noautolinks>
* Gardoń A. (2011), ''[https://dbc.wroc.pl/Content/34583/download/ Rozkład statystyki T-Studenta przy danej wariancji z próby o rozkładzie normalnym]'', "Didactics of Mathematics", Nr 8 (12), s. 17-30.
* Bobowski Z. (2004), ''Wybrane metody statystyki opisowej i wnioskowania statystycznego'', WWSZiP, Wałbrzych
* Kurkiewicz J. (2005), ''Podstawy statystyki'', Oficyna Wydawnicza AFM, Kraków, s 190-203.
* Gardoń A. (2011), ''[https://dbc.wroc.pl/Content/34583/download/ Rozkład statystyki T-Studenta przy danej wariancji z próby o rozkładzie normalnym]'', Didactics of Mathematics, Nr 8
* Lipińska K. (2010), ''Rachunek prawdopodobieństwa i statystyka'', Ośrodek Kształcenia na Odległość Politechniki Warszawskiej OKNO, Warszawa, s. 69-72.
* Kurkiewicz J. (2005), ''Podstawy statystyki'', Oficyna Wydawnicza AFM, Kraków
* Magiera R. (2018), ''[http://www.gis.wroc.pl/pdf/mimsm2_www.pdf Modele i metody statystyki matematycznej]'', Oficyna Wydawnicza GiS, Wrocław.
* Lipińska K. (2010), ''Rachunek prawdopodobieństwa i statystyka'', Ośrodek Kształcenia na Odległość Politechniki Warszawskiej OKNO, Warszawa
* Malska W. (2015), ''[http://webcache.googleusercontent.com/search?q=cache:pXeugSuo-0IJ:cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.desklight-5d9fba13-767c-48c1-9e27-702d30775f48/c/047__ETI_nr_Vol_6_3_Wykorzystanie_testu.pdf+&cd=10&hl=pl&ct=clnk&gl=pl Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym]'', „Edukacja – Technika – Informatyka” nr 3(13), s. 326.
* Magiera R. (2018), ''Modele i metody statystyki matematycznej'', Oficyna Wydawnicza GiS, Wrocław
* Sobczyk M. (2007), ''Statystyka'', Wydawnictwo Naukowe PWN, Warszawa, s. 146-150.
* Malska W. (2015), ''Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym'', Edukacja - Technika - Informatyka nr 3(13)
* Sobczyk M. (2007), ''Statystyka'', Wydawnictwo Naukowe PWN, Warszawa
</noautolinks>


{{a|Anna Tas}}
{{a|Anna Tas}}
[[Kategoria: Statystyka i Ekonometria]]
[[Kategoria:Miary statystyczne]]
 
{{#metamaster:description|Test t-Studenta - narzędzie statystyczne do porównywania wyników między dwiema grupami. Sprawdź, czy wartości średnie różnią się istotnie. Dowiedz się więcej.}}

Aktualna wersja na dzień 00:17, 5 sty 2024

Test t - Studenta jest wykorzystywany w celu porównania grup, dla których mamy wyniki, czyli chcemy stwierdzić czy wyniki w jednej grupie są większe bądź mniejsze niż w drugiej grupie. Testu t - Studenta nie należy wykonywać dla więcej niż dwóch grup. Odpowiada on na pytanie czy średnie wartości badanych zmiennych w dwóch grupach różnią się od siebie statystycznie istotnie (M. Sobczyk 2007, s. 134-136).

TL;DR

Test t-Studenta jest wykorzystywany do porównywania wyników między dwiema grupami. Ma trzy rodzaje: dla prób niezależnych, dla prób zależnych i dla jednej próby. Test opiera się na założeniu rozkładu normalnego i podobności wariancji w grupach. Rozkład t-Studenta jest stosowany w statystyce i metrologii dla prób o małej liczebności. Test t-Studenta może być używany w różnych badaniach, takich jak porównywanie wpływów z różnych źródeł czy różnic między grupami społecznymi.

Założenia testów t-Studenta

Założenie testów t-Studenta jest następujące (M. Sobczyk 2007, s. 134-136):

  1. rozkład wyników zmiennej zależnej w badanych grupach jest zbliżony do rozkładu normalnego,
  2. porównywane grupy są podobne pod kątem ilości badanych osób,
  3. homogeniczność wariancji, tzn. wariancje w grupach badanych są do siebie podobne
  4. zmienna zależna powinna być mierzona na skali ilościowej

Test t - Studenta jest testem parametrycznym, czyli opiera się na obliczaniu wartości średniej i odchylenia standardowego. Posiadając zmienne mierzone w skali porządkowej czy nominalnej obliczenie wartości za pomocą t-Studenta nie jest możliwe. W tym przypadku powinien zostać zastosowany jego odpowiedni dla testów nieparametrycznych, a mianowicie test U Manna-Whitneya (M. Sobczyk 2007, s. 134-136).

Rodzaje testów

Istnieją trzy rodzaje testu t-Studenta (W. Malska 2015, s. 326):

  • dla prób niezależnych - ocenia różnice między niezależnymi grupami np. między grupą kontrolną a eksperymentalną, kobietami a mężczyznami czy grupą starszych i młodszych. Aby wyniki wyszły prawidłowe należy mieć na uwadze takie czynniki jak: pomiar ilościowy zmiennej zależnej, zmienna niezależna powinna być dychotomiczna, rozkład w grupach powinien być normalny, wariancje oraz liczebność grup jest zbliżona. Porównanie grupy badanych następuje z wykorzystaniem testu zgodności chi-kwadrat (test Pearsona). Wzór dla prób niezależnych wygląda następująco (W. Malska 2015, s. 326):

  • dla prób zależnych - Jest to klasyczny przykład testu wykonywanego przed i po zaistniałej zmianie. W odróżnieniu od testu dla prób niezależnych, bierze pod uwagę i ocenia te same grupy osób. Obserwacja musi odbyć się dwa razy, a badane próby są powiązane ze sobą. Próba ta zestawia ze sobą wynik i pierwszego i drugiego pomiaru dokonywanego na jednej zmiennej. Zmienna jest badana w odniesieniu do innych warunków, jakie zachodzą, jednakże z uwzględnieniem tej samej grupy badanych. Próba zależna wymaga zaistnienia określonych czynników: zmiennej zależnej w pomiarze ilościowym; rozkładu zmiennej, który jest normalny; zastosowania identycznej skali pomiaru przy obydwu pomiarach, normalność rozkładu różnic zmiennych (W. Malska 2015, s. 326):
  • dla jednej próby - test ten pozwala wyciągnąć wnioski z zestawienia: średniego wyniki dokonanego na jednej grupie osób poddanych w badaniu, z odchyleniem standardowym wynikającym z tego samego badania na tej samej, jednej grupie badanych. Obydwa te pomiary koreluje się z założoną na potrzeby tego badania wartością. Wartość ta może być przyjęta hipotetycznie lub można wynika z innych badań. Test jednej próby używany jest, kiedy dokonywany jest pomiar zmiennej o ile znajduje się ona na skali ilościowej i ma rozkład normalny (W. Malska 2015, s. 326):

Rozkład t-Studenta

Rozkład t-Studenta zwany również rozkładem t to model teoretyczny wykorzystywany do przybliżenia momentu pierwszego rzędu populacji o rozkładzie normalnym, przy niewielkiej wielkości próby oraz nieznanym odchyleniem standardowym. Jest to rozkład prawdopodobieństwa, który podaje wartość małej próby z populacji, posiadającej rozkład normalny i dla której brak jest informacji o odchyleniu standardowym. W przeciwieństwie do rozkładu normalnego rozkład t zależy jedynie od stopni swobody (M. Sobczyk 2007, s. 134-136).

Rozkład t-Studenta jest stosowany w statystyce i metrologii. Opierają się na dwóch podstawowych twierdzeniach (M. Sobczyk 2007, s. 134-136):

  1. zmienne losowe mają taki sam rozkład prawdopodobieństwa, który jest rozkładem normalnym o średniej i wariancji . Wówczas zmienna ma rozkład Studenta o stopniach swobody,
  2. dwie próby o liczebności oraz , wartościach średnich oraz i wariancja określona z próby oraz wylosowane z populacji o jednakowym rozkładzie normalnym, powodują, że zmienna ma rozkład Studenta o .

Rozkład ten jest wykorzystywany w testach parametrycznych, estymacji przedziałowej, wartości średnich i wariancji oraz testach istotności, gdy chodzi o próby z niewielką liczebnością, czyli gdy . W przypadku metrologii rozkładu Studenta używa się do estymacji odchylenia standardowego. Jeśli chodzi o duże próby, gdzie rozkład t-Studenta jest tożsamy z rozkładem normalnym, a dla mniejszych prób estymator odchylenia standardowego powinien zostać pomnożony przez wartość krytyczną rozkładu, gdzie liczba stopni swobody wynosi , a poziom istotności przyjmuje wartość (M. Sobczyk 2007, s. 134-136).

Przykłady zastosowania testu t-Studenta

Test t-Studenta można wykorzystać w badaniu różnych zjawisk w zależności od posiadanych danych. Poniżej zostały przedstawione przykłady problemów badawczych w odniesieniu do rodzajów testów t-Studenta (R. Magiera 2018, s. 226):

  1. dla jednej próby

Czy wpływy ze sztabów WOŚP w woj. Lubelskim różnią się od średniej z ubiegłego roku?

Czy inteligencja studentów z UEK różni się od średniej w populacji?

  1. dla prób skorelowanych (zależnych)

Czy słuchanie muzyki podczas rozwiązywania zadań wydłuża czas znalezienia rozwiązania?

Czy istnieje różnica między wysokością zarobków na początku zatrudnienia a wysokością zarobków po 5 latach pracy?

  1. dla prób nieskorelowanych (niezależnych)

Czy kobiety i mężczyźni różnią się liczbą podejść do egzaminy na prawo jazdy?

Czy mieszkańcy miast i wsi różnią się od siebie wysokością zarobków?


Test t Studentaartykuły polecane
Analiza regresjiRozkład t-StudentaPrzedział ufnościWspółczynnik determinacjiRozkład normalnyŚredniaPróbaWspółczynnik korelacji rang SpearmanaTest zgodności chi-kwadrat

Bibliografia

  • Bobowski Z. (2004), Wybrane metody statystyki opisowej i wnioskowania statystycznego, WWSZiP, Wałbrzych
  • Gardoń A. (2011), Rozkład statystyki T-Studenta przy danej wariancji z próby o rozkładzie normalnym, Didactics of Mathematics, Nr 8
  • Kurkiewicz J. (2005), Podstawy statystyki, Oficyna Wydawnicza AFM, Kraków
  • Lipińska K. (2010), Rachunek prawdopodobieństwa i statystyka, Ośrodek Kształcenia na Odległość Politechniki Warszawskiej OKNO, Warszawa
  • Magiera R. (2018), Modele i metody statystyki matematycznej, Oficyna Wydawnicza GiS, Wrocław
  • Malska W. (2015), Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym, Edukacja - Technika - Informatyka nr 3(13)
  • Sobczyk M. (2007), Statystyka, Wydawnictwo Naukowe PWN, Warszawa


Autor: Anna Tas