Rozkład dwumianowy: Różnice pomiędzy wersjami
m (cleanup bibliografii i rotten links) |
m (cleanup bibliografii i rotten links) |
||
(Nie pokazano 8 wersji utworzonych przez 2 użytkowników) | |||
Linia 1: | Linia 1: | ||
'''Rozkład dwumianowy''' - rozkład prawdopodobieństwa sformułowany przez szwajcarskiego matematyka Johanna Bernulliego (1654-1705). Zmianna losowa ma rozkład dwumianowy, gdy zostaną spełnione następujące warunki: | '''Rozkład dwumianowy''' - rozkład prawdopodobieństwa sformułowany przez szwajcarskiego matematyka Johanna Bernulliego (1654-1705). Zmianna losowa ma rozkład dwumianowy, gdy zostaną spełnione następujące warunki: | ||
* Liczba prób jest ustalona - we wzorach najczęściej określana jako "n". | * Liczba prób jest ustalona - we wzorach najczęściej określana jako "n". | ||
Linia 21: | Linia 7: | ||
Definicja rozkładu dwumianowego bazuje na eksperymencie wykonywanym według tak zwanego '''schematu Bernoulliego'''. Eksperyment ten przebiega w następujący sposób: | Definicja rozkładu dwumianowego bazuje na eksperymencie wykonywanym według tak zwanego '''schematu Bernoulliego'''. Eksperyment ten przebiega w następujący sposób: | ||
:Należy przeprowadzić doświadczenie, którego wynikiem może być jedno z następujących zdarzeń, zdarzenie ''A'' z prawdopodobieństwem ''p'' lub zdarzenie przeciwne ''B'', którego prawdopodobieństwo wystąpienia wynosi ''q = 1-p''. Jedno ze zdarzeń określane jest jako "sukces" a drugie jako "porażka". Doświadczenie to należy powtórzyć n-krotnie. Każde z doświadczeń musi być niezależne, czyli prawdopodobieństwo sukcesu pozostaje niezmienne. Liczba doświadczeń które zakończyły sukcesami można wyrazić zmienną losową ''X'' należącą do zbioru liczb całkowitych nieujemnych z granicą równą ''n'' (liczba prób) (J. Jóźwiak, J. Podgórski 2012, s. 128-129). | :Należy przeprowadzić doświadczenie, którego wynikiem może być jedno z następujących zdarzeń, zdarzenie ''A'' z prawdopodobieństwem ''p'' lub zdarzenie przeciwne ''B'', którego prawdopodobieństwo wystąpienia wynosi ''q = 1-p''. Jedno ze zdarzeń określane jest jako "sukces" a drugie jako "porażka". Doświadczenie to należy powtórzyć n-krotnie. Każde z doświadczeń musi być niezależne, czyli prawdopodobieństwo sukcesu pozostaje niezmienne. Liczba doświadczeń które zakończyły sukcesami można wyrazić zmienną losową ''X'' należącą do zbioru liczb całkowitych nieujemnych z granicą równą ''n'' (liczba prób) (J. Jóźwiak, J. Podgórski 2012, s. 128-129). | ||
Przykład eksperymentu przeprowadzonego według schematu Bernulliego: | Przykład eksperymentu przeprowadzonego według schematu Bernulliego: | ||
Linia 28: | Linia 13: | ||
==TL;DR== | ==TL;DR== | ||
Rozkład dwumianowy to rozkład prawdopodobieństwa, w którym liczba prób jest ustalona, wynikiem może być sukces lub porażka, próby są niezależne, a prawdopodobieństwo sukcesu i porażki jest stałe. Można go opisać za pomocą schematu Bernoulliego. Charakterystyki rozkładu dwumianowego to wartość oczekiwana, wariancja i odchylenie standardowe. Można też określić rozkład prawdopodobieństwa częstości względnej sukcesu. | Rozkład dwumianowy to rozkład prawdopodobieństwa, w którym liczba prób jest ustalona, wynikiem może być sukces lub porażka, próby są niezależne, a prawdopodobieństwo sukcesu i porażki jest stałe. Można go opisać za pomocą schematu Bernoulliego. Charakterystyki rozkładu dwumianowego to wartość oczekiwana, wariancja i odchylenie standardowe. Można też określić rozkład prawdopodobieństwa częstości względnej sukcesu. | ||
<google>n</google> | |||
==Funkcja prawdopodobieństwa zmiennej dwumianowej== | ==Funkcja prawdopodobieństwa zmiennej dwumianowej== | ||
Linia 63: | Linia 50: | ||
:<math> \left ( k=0,1,...,n \right ) </math> | :<math> \left ( k=0,1,...,n \right ) </math> | ||
Równość ta oznacza, że zmienna ''W'' podlega rozkładowy dwumianowemu oraz przymuje takie same wartości co zmienna losowa ''X''. | Równość ta oznacza, że zmienna ''W'' podlega rozkładowy dwumianowemu oraz przymuje takie same wartości co zmienna losowa ''X''. | ||
Wykorzystując własności wynikające z definicji wartości oczekiwane oraz definicji wariancji otrzymuje się: | |||
:<math> D^2\left ( W \right )=D^2\left ( \frac{X}{n} \right )=\frac{1}{n^2}D^2\left ( X \right )=\frac{1}{n^2}np\left ( 1-p \right )=\frac{p\left ( 1-p \right )}{n}</math> | :<math> D^2\left ( W \right )=D^2\left ( \frac{X}{n} \right )=\frac{1}{n^2}D^2\left ( X \right )=\frac{1}{n^2}np\left ( 1-p \right )=\frac{p\left ( 1-p \right )}{n}</math> | ||
oraz | oraz | ||
:<math> E\left ( W \right )=E\left ( \frac{X}{n} \right )=\frac{1}{n}E\left ( X \right )=\frac{1}{n}np=p </math> | :<math> E\left ( W \right )=E\left ( \frac{X}{n} \right )=\frac{1}{n}E\left ( X \right )=\frac{1}{n}np=p </math> | ||
Z ostatniego wzoru wynika, iż w ''n'' doświadczeniach przeprowadzonych według schematu Bernulliego, wartość oczekiwna częstości sukcesów jest taka sama co prowdopodobieństwo wystąpienia sukcesu w pojedynczym doświadczniu (J. Jóźwiak, J. Podgórski 2012, s. 132-133). | Z ostatniego wzoru wynika, iż w ''n'' doświadczeniach przeprowadzonych według schematu Bernulliego, wartość oczekiwna częstości sukcesów jest taka sama co prowdopodobieństwo wystąpienia sukcesu w pojedynczym doświadczniu (J. Jóźwiak, J. Podgórski 2012, s. 132-133). | ||
{{infobox5|list1={{i5link|a=[[Estymacja]]}} — {{i5link|a=[[Zmienna losowa]]}} — {{i5link|a=[[Prawdopodobieństwo]]}} — {{i5link|a=[[Rozkład Poissona]]}} — {{i5link|a=[[Estymator obciążony]]}} — {{i5link|a=[[Regresja liniowa]]}} — {{i5link|a=[[Wartość oczekiwana]]}} — {{i5link|a=[[Schemat Bernoulliego]]}} — {{i5link|a=[[Mediana wzór]]}} }} | |||
==Bibliografia== | ==Bibliografia== | ||
<noautolinks> | <noautolinks> | ||
* Denkowska S., Papież M. (2011), ''Rachunek prawdopodobieństwa dla studentów studiów ekonomicznych'', | * Denkowska S., Papież M. (2011), ''Rachunek prawdopodobieństwa dla studentów studiów ekonomicznych'', C.H. Beck, Warszawa | ||
* Gębura A. (2004), | * Gębura A. (2004), ''Matematyka, fizyka i astronomia'', WSiP, Warszawa | ||
* Gruszczyński M. (red.) (2012), | * Gruszczyński M. (red.) (2012), ''Mikroekonometria. Modele i metody analizy danych indywidualnych'', Wolters Kluwer, Warszawa | ||
* | * Jóźwiak J., Podgórski J. (2012), ''Statystyka od podstaw'', Polskie Wydawnictwo Ekonomiczne, Warszawa | ||
* Ostasiewicz W. (2012), | * Ostasiewicz W. (2012), ''Myślenie statystyczne'', Wolters Kluwer, Warszawa | ||
* Woźniak M. (2002), ''Statystyka ogólna'', Wydawnictwo Akademii Ekonomicznej w Krakowie, Kraków | * Woźniak M. (2002), ''Statystyka ogólna'', Wydawnictwo Akademii Ekonomicznej w Krakowie, Kraków | ||
</noautolinks> | </noautolinks> | ||
[[Kategoria: | [[Kategoria:Rozkład]] | ||
{{a|Mateusz Kaczor}} | {{a|Mateusz Kaczor}} | ||
{{#metamaster:description|Rozkład dwumianowy - rozkład prawdopodobieństwa zdefiniowany przez Bernulliego. Dowiedz się więcej o zastosowaniach tego rozkładu.}} | {{#metamaster:description|Rozkład dwumianowy - rozkład prawdopodobieństwa zdefiniowany przez Bernulliego. Dowiedz się więcej o zastosowaniach tego rozkładu.}} |
Aktualna wersja na dzień 21:54, 9 gru 2023
Rozkład dwumianowy - rozkład prawdopodobieństwa sformułowany przez szwajcarskiego matematyka Johanna Bernulliego (1654-1705). Zmianna losowa ma rozkład dwumianowy, gdy zostaną spełnione następujące warunki:
- Liczba prób jest ustalona - we wzorach najczęściej określana jako "n".
- Wynikiem każdej próby mogą być jedynie stany: sukces i porażka.
- Każda z prób jest niezależna, oznacza to, że wynik poszczególnej próby nie ma wpływu na wyniki pozostałych prób.
- Prawdopodobieństwo sukcesu i porażki jest stałe dla wszystkich prób.
Definicja rozkładu dwumianowego bazuje na eksperymencie wykonywanym według tak zwanego schematu Bernoulliego. Eksperyment ten przebiega w następujący sposób:
- Należy przeprowadzić doświadczenie, którego wynikiem może być jedno z następujących zdarzeń, zdarzenie A z prawdopodobieństwem p lub zdarzenie przeciwne B, którego prawdopodobieństwo wystąpienia wynosi q = 1-p. Jedno ze zdarzeń określane jest jako "sukces" a drugie jako "porażka". Doświadczenie to należy powtórzyć n-krotnie. Każde z doświadczeń musi być niezależne, czyli prawdopodobieństwo sukcesu pozostaje niezmienne. Liczba doświadczeń które zakończyły sukcesami można wyrazić zmienną losową X należącą do zbioru liczb całkowitych nieujemnych z granicą równą n (liczba prób) (J. Jóźwiak, J. Podgórski 2012, s. 128-129).
Przykład eksperymentu przeprowadzonego według schematu Bernulliego: Wykonujemy 10 niezależnych doświadczeń polegających na rzucie monetą. W każdym rzucie prawdopodobieństwo że wypadnie reszka wynosi 50% czyli p =0,5. Można przyjąć, że doświadczenie którego wynikiem jest reszka będzie sukcesem a jeżeli wypadnie orzeł to wynikiem będzie porażka. Reszka może wypaść k = 0, 1, 2, …, 10 razy.
TL;DR
Rozkład dwumianowy to rozkład prawdopodobieństwa, w którym liczba prób jest ustalona, wynikiem może być sukces lub porażka, próby są niezależne, a prawdopodobieństwo sukcesu i porażki jest stałe. Można go opisać za pomocą schematu Bernoulliego. Charakterystyki rozkładu dwumianowego to wartość oczekiwana, wariancja i odchylenie standardowe. Można też określić rozkład prawdopodobieństwa częstości względnej sukcesu.
Funkcja prawdopodobieństwa zmiennej dwumianowej
Zdarzenie X = k ma miejsce, gdy po przeprowadzonych n niezależnych prób, zaobserwujemy dowolny ciąg zdarzeń, w którym sukces wystąpił k razy a porażka n-k razy. Prawdopodobieństwo otrzymania takiego ciągu jest dokładnie takie samo jak otrzymanie dowolnego innego ciągu zdarzeń i wynosi:
Aby obliczyć liczbę możliwych n-elementowych ciągów zdarzeń, w których zdarzenie nazywane sukcesem wystąpi dokładnie k razy, należy obliczyć kombinację z n elementów po k. Zatem prawdopodobieństwo wystąpienia zdarzenia X = k będzie sumą prawdopodobieńswt wystąpienia poszczególnych kombinacji:
Wzór prawdziwy dla k = 0, 1, 2, …, n (J. Jóźwiak, J. Podgórski 2012, s. 128-129).
Charakterystyki rozkładu dwumianowego
Aby wyznaczyć wartość oczekiwną oraz wariancję zmiennej, która podlega rozkładowi dwumianowemu należy wykorzystać fakt, że zmienna losowa X ~ B(n,p) może zostać przedstawiona jako suma n niezależnych zmiennych losowych podlegających rozkładowu zero-jedynkowemy z paremetrem p:
- gdzie X ~ rozkład zero-jedynkowy z parametrem p,(i = 1,...,n).
Następnie wtkorzystującc własności wartości oczekiwanej oraz wariancji, można otrzymać następujące wzory:
oraz
Zatem charekterystyki rozkładu dwumianowego prezentują się następująco:
- wartośc oczekiwana:
- wariancja:
- odchylenie standardowe:
(S. Denkowska, M. Papież 2011, s. 43-44)
Rozkład prawdopodobieństwa częstości względnej pojawiania się sukcesu
Mając zmienną losową podlegającą rozkładowi dwumianowemu o parametrach n oraz p, można zdefiniować częstość względną sukcesów jako zmienną losową:
Zmienna ta może przyjmować wartości należące do zbioru:
Zachodzi zatem równość:
Gdzie:
Równość ta oznacza, że zmienna W podlega rozkładowy dwumianowemu oraz przymuje takie same wartości co zmienna losowa X. Wykorzystując własności wynikające z definicji wartości oczekiwane oraz definicji wariancji otrzymuje się:
oraz
Z ostatniego wzoru wynika, iż w n doświadczeniach przeprowadzonych według schematu Bernulliego, wartość oczekiwna częstości sukcesów jest taka sama co prowdopodobieństwo wystąpienia sukcesu w pojedynczym doświadczniu (J. Jóźwiak, J. Podgórski 2012, s. 132-133).
Rozkład dwumianowy — artykuły polecane |
Estymacja — Zmienna losowa — Prawdopodobieństwo — Rozkład Poissona — Estymator obciążony — Regresja liniowa — Wartość oczekiwana — Schemat Bernoulliego — Mediana wzór |
Bibliografia
- Denkowska S., Papież M. (2011), Rachunek prawdopodobieństwa dla studentów studiów ekonomicznych, C.H. Beck, Warszawa
- Gębura A. (2004), Matematyka, fizyka i astronomia, WSiP, Warszawa
- Gruszczyński M. (red.) (2012), Mikroekonometria. Modele i metody analizy danych indywidualnych, Wolters Kluwer, Warszawa
- Jóźwiak J., Podgórski J. (2012), Statystyka od podstaw, Polskie Wydawnictwo Ekonomiczne, Warszawa
- Ostasiewicz W. (2012), Myślenie statystyczne, Wolters Kluwer, Warszawa
- Woźniak M. (2002), Statystyka ogólna, Wydawnictwo Akademii Ekonomicznej w Krakowie, Kraków
Autor: Mateusz Kaczor