Rozkład dwumianowy: Różnice pomiędzy wersjami
m (cleanup bibliografii i rotten links) |
m (cleanup bibliografii i rotten links) |
||
Linia 73: | Linia 73: | ||
* Denkowska S., Papież M. (2011), ''Rachunek prawdopodobieństwa dla studentów studiów ekonomicznych'', C.H. Beck, Warszawa | * Denkowska S., Papież M. (2011), ''Rachunek prawdopodobieństwa dla studentów studiów ekonomicznych'', C.H. Beck, Warszawa | ||
* Gębura A. (2004), [https://books.google.pl/books?id=8P4uiiTT7nQC&pg=PA102&dq=rozk%C5%82ad+dwumianowy&hl=pl&sa=X&ved=2ahUKEwiFkZnOoJv3AhVjtIsKHdFEB_MQ6AF6BAgDEAI#v=onepage&q=rozk%C5%82ad%20dwumianowy&f=false ''Matematyka, fizyka i astronomia]'', WSiP, Warszawa, s, 101 | * Gębura A. (2004), [https://books.google.pl/books?id=8P4uiiTT7nQC&pg=PA102&dq=rozk%C5%82ad+dwumianowy&hl=pl&sa=X&ved=2ahUKEwiFkZnOoJv3AhVjtIsKHdFEB_MQ6AF6BAgDEAI#v=onepage&q=rozk%C5%82ad%20dwumianowy&f=false ''Matematyka, fizyka i astronomia]'', WSiP, Warszawa, s, 101 | ||
* Gruszczyński M. (red.) (2012), | * Gruszczyński M. (red.) (2012), ''Mikroekonometria. Modele i metody analizy danych indywidualnych'', Wolters Kluwer, Warszawa | ||
* Jóźwiak J., Podgórski J. (2012), ''Statystyka od podstaw'', Polskie Wydawnictwo Ekonomiczne, Warszawa | * Jóźwiak J., Podgórski J. (2012), ''Statystyka od podstaw'', Polskie Wydawnictwo Ekonomiczne, Warszawa | ||
* Ostasiewicz W. (2012), [https://books.google.pl/books?id=QZpSAwAAQBAJ&pg=PA103&dq=rozk%C5%82ad+dwumianowy&hl=pl&sa=X&ved=2ahUKEwiy7r_-nZv3AhUsQ_EDHTXyC30Q6AF6BAgEEAI#v=onepage&q=rozk%C5%82ad%20dwumianowy&f=false ''Myślenie statystyczne]'', Wolters Kluwer Polska, Warszawa | * Ostasiewicz W. (2012), [https://books.google.pl/books?id=QZpSAwAAQBAJ&pg=PA103&dq=rozk%C5%82ad+dwumianowy&hl=pl&sa=X&ved=2ahUKEwiy7r_-nZv3AhUsQ_EDHTXyC30Q6AF6BAgEEAI#v=onepage&q=rozk%C5%82ad%20dwumianowy&f=false ''Myślenie statystyczne]'', Wolters Kluwer Polska, Warszawa |
Wersja z 00:05, 14 lis 2023
Rozkład dwumianowy |
---|
Polecane artykuły |
Rozkład dwumianowy - rozkład prawdopodobieństwa sformułowany przez szwajcarskiego matematyka Johanna Bernulliego (1654-1705). Zmianna losowa ma rozkład dwumianowy, gdy zostaną spełnione następujące warunki:
- Liczba prób jest ustalona - we wzorach najczęściej określana jako "n".
- Wynikiem każdej próby mogą być jedynie stany: sukces i porażka.
- Każda z prób jest niezależna, oznacza to, że wynik poszczególnej próby nie ma wpływu na wyniki pozostałych prób.
- Prawdopodobieństwo sukcesu i porażki jest stałe dla wszystkich prób.
Definicja rozkładu dwumianowego bazuje na eksperymencie wykonywanym według tak zwanego schematu Bernoulliego. Eksperyment ten przebiega w następujący sposób:
- Należy przeprowadzić doświadczenie, którego wynikiem może być jedno z następujących zdarzeń, zdarzenie A z prawdopodobieństwem p lub zdarzenie przeciwne B, którego prawdopodobieństwo wystąpienia wynosi q = 1-p. Jedno ze zdarzeń określane jest jako "sukces" a drugie jako "porażka". Doświadczenie to należy powtórzyć n-krotnie. Każde z doświadczeń musi być niezależne, czyli prawdopodobieństwo sukcesu pozostaje niezmienne. Liczba doświadczeń które zakończyły sukcesami można wyrazić zmienną losową X należącą do zbioru liczb całkowitych nieujemnych z granicą równą n (liczba prób) (J. Jóźwiak, J. Podgórski 2012, s. 128-129).
Przykład eksperymentu przeprowadzonego według schematu Bernulliego: Wykonujemy 10 niezależnych doświadczeń polegających na rzucie monetą. W każdym rzucie prawdopodobieństwo że wypadnie reszka wynosi 50% czyli p =0,5. Można przyjąć, że doświadczenie którego wynikiem jest reszka będzie sukcesem a jeżeli wypadnie orzeł to wynikiem będzie porażka. Reszka może wypaść k = 0, 1, 2, …, 10 razy.
TL;DR
Rozkład dwumianowy to rozkład prawdopodobieństwa, w którym liczba prób jest ustalona, wynikiem może być sukces lub porażka, próby są niezależne, a prawdopodobieństwo sukcesu i porażki jest stałe. Można go opisać za pomocą schematu Bernoulliego. Charakterystyki rozkładu dwumianowego to wartość oczekiwana, wariancja i odchylenie standardowe. Można też określić rozkład prawdopodobieństwa częstości względnej sukcesu.
Funkcja prawdopodobieństwa zmiennej dwumianowej
Zdarzenie X = k ma miejsce, gdy po przeprowadzonych n niezależnych prób, zaobserwujemy dowolny ciąg zdarzeń, w którym sukces wystąpił k razy a porażka n-k razy. Prawdopodobieństwo otrzymania takiego ciągu jest dokładnie takie samo jak otrzymanie dowolnego innego ciągu zdarzeń i wynosi:
Aby obliczyć liczbę możliwych n-elementowych ciągów zdarzeń, w których zdarzenie nazywane sukcesem wystąpi dokładnie k razy, należy obliczyć kombinację z n elementów po k. Zatem prawdopodobieństwo wystąpienia zdarzenia X = k będzie sumą prawdopodobieńswt wystąpienia poszczególnych kombinacji:
Wzór prawdziwy dla k = 0, 1, 2, …, n (J. Jóźwiak, J. Podgórski 2012, s. 128-129).
Charakterystyki rozkładu dwumianowego
Aby wyznaczyć wartość oczekiwną oraz wariancję zmiennej, która podlega rozkładowi dwumianowemu należy wykorzystać fakt, że zmienna losowa X ~ B(n,p) może zostać przedstawiona jako suma n niezależnych zmiennych losowych podlegających rozkładowu zero-jedynkowemy z paremetrem p:
- gdzie X ~ rozkład zero-jedynkowy z parametrem p,(i = 1,...,n).
Następnie wtkorzystującc własności wartości oczekiwanej oraz wariancji, można otrzymać następujące wzory:
oraz
Zatem charekterystyki rozkładu dwumianowego prezentują się następująco:
- wartośc oczekiwana:
- wariancja:
- odchylenie standardowe:
(S. Denkowska, M. Papież 2011, s. 43-44)
Rozkład prawdopodobieństwa częstości względnej pojawiania się sukcesu
Mając zmienną losową podlegającą rozkładowi dwumianowemu o parametrach n oraz p, można zdefiniować częstość względną sukcesów jako zmienną losową:
Zmienna ta może przyjmować wartości należące do zbioru:
Zachodzi zatem równość:
Gdzie:
Równość ta oznacza, że zmienna W podlega rozkładowy dwumianowemu oraz przymuje takie same wartości co zmienna losowa X. Wykorzystując własności wynikające z definicji wartości oczekiwane oraz definicji wariancji otrzymuje się:
oraz
Z ostatniego wzoru wynika, iż w n doświadczeniach przeprowadzonych według schematu Bernulliego, wartość oczekiwna częstości sukcesów jest taka sama co prowdopodobieństwo wystąpienia sukcesu w pojedynczym doświadczniu (J. Jóźwiak, J. Podgórski 2012, s. 132-133).
Bibliografia
- Denkowska S., Papież M. (2011), Rachunek prawdopodobieństwa dla studentów studiów ekonomicznych, C.H. Beck, Warszawa
- Gębura A. (2004), Matematyka, fizyka i astronomia, WSiP, Warszawa, s, 101
- Gruszczyński M. (red.) (2012), Mikroekonometria. Modele i metody analizy danych indywidualnych, Wolters Kluwer, Warszawa
- Jóźwiak J., Podgórski J. (2012), Statystyka od podstaw, Polskie Wydawnictwo Ekonomiczne, Warszawa
- Ostasiewicz W. (2012), Myślenie statystyczne, Wolters Kluwer Polska, Warszawa
- Woźniak M. (2002), Statystyka ogólna, Wydawnictwo Akademii Ekonomicznej w Krakowie, Kraków
Autor: Mateusz Kaczor