Rozkład t-Studenta: Różnice pomiędzy wersjami
m (cleanup bibliografii i rotten links) |
|||
(Nie pokazano 42 wersji utworzonych przez 3 użytkowników) | |||
Linia 1: | Linia 1: | ||
'''Rozkład t-Studenta''' (nazwa pochodzi od angielskiego matematyka i statystyka William Sealy Gosseta, który pracował pod pseudonimem Student) jest to rozkład statystyczny, który jest używany do oceny, czy średnia danej grupy różni się od innych grup. Jest to szczególnie przydatne, gdy nie mamy dużo danych i nie możemy założyć, że rozkład danych jest normalny. Stosowany w statystyce do testowania hipotez dotyczących wartości średniej dla małych prób lub gdy nie wiadomo jaka jest wartość odchylenia standardowego dla badanej populacji (M. Sobczyk 2007, s. 13-27). | |||
==TL;DR== | |||
Rozkład t-Studenta to rozkład statystyczny używany do porównywania średnich wartości między grupami, szczególnie w przypadku małej liczby danych i nieznanego rozkładu populacji. Jest symetryczny i podobny do rozkładu normalnego, ale ma bardziej rozstawione skrzydła. Liczba stopni swobody określa kształt rozkładu. Jest używany w testach parametrycznych i estymacji przedziałowej, zwłaszcza gdy liczba próbek jest mała. Do obliczenia wartości t używamy wzoru z wykorzystaniem średniej i odchylenia standardowego próby. Rozkład t-Studenta jest stosowany do testowania hipotez statystycznych i estymacji odchyleń standardowych dla małych próbek. | |||
''Główne cechy rozkładu t-Studenta to'' | ==Rozkład t-Studenta== | ||
'''Rozkład t-Studenta''' jest podobny do rozkładu normalnego, ale ma bardziej "rozstawione" skrzydła, co oznacza, że prawdopodobieństwo wystąpienia bardzo odległych wartości jest większe niż w przypadku rozkładu normalnego. Rozkład t - studenta jest rozkładem symetrycznym, jednomodalnym (ma jedną "górkę"). Im mniej obserwacji, tym szerszy rozkład. | |||
'''Główne cechy rozkładu t-Studenta to''' | |||
* Symetryczność: rozkład t-Studenta jest symetryczny względem średniej. | * Symetryczność: rozkład t-Studenta jest symetryczny względem średniej. | ||
* Kształt: rozkład t-Studenta ma kształt podobny do kształtu rozkładu normalnego, ale jest bardziej "rozciągnięty" w kierunku skrajnych wartości. | * Kształt: rozkład t-Studenta ma kształt podobny do kształtu rozkładu normalnego, ale jest bardziej "rozciągnięty" w kierunku skrajnych wartości. | ||
* Wypukłość: rozkład t-Studenta jest wypukły, co oznacza, że prawdopodobieństwo wystąpienia wartości blisko średniej jest większe niż prawdopodobieństwo wystąpienia wartości skrajnych. | * Wypukłość: rozkład t-Studenta jest wypukły, co oznacza, że prawdopodobieństwo wystąpienia wartości blisko średniej jest większe niż prawdopodobieństwo wystąpienia wartości skrajnych (Biecek P. 2011, s. 170-212). | ||
==Wzór na gęstość prawdopodobieństwa rozkładu t-Studenta== | ==Wzór na gęstość prawdopodobieństwa rozkładu t-Studenta== | ||
<math> f(x) = \frac{\gamma (\frac{n+1}{2})}{\gamma (\frac{n}{2})\sqrt{n \pi}}(1+\frac{t^2}{n})^{-\frac{n+1}{2}}</math> | |||
< | <google>n</google> | ||
Gdzie | |||
<math>n</math> - to liczba stopni swobody, | |||
γ - to funkcja gamma, | |||
<math>x</math> - to wartość, dla której obliczamy prawdopodobieństwo. | |||
Liczba stopni swobody <math>n</math> określa kształt rozkładu t-Studenta. | |||
Im większa liczba stopni swobody, tym bardziej rozkład t-Studenta przypomina rozkład normalny. Dla dużych wartości <math>n</math> rozkład t-Studenta jest bardzo zbliżony do rozkładu normalnego (Biecek P. 2011, s. 170-212). | |||
Rozkład | '''Rozkład t-Studenta znany również jako rozkład t''' jest modelem teoretycznym używanym do aproksymacji momentu pierwszego rzędu populacji o rozkładzie normalnym z małą liczebnością próby i nieznanym odchyleniem standardowym. Jest to rozkład prawdopodobieństwa, który zapewnia wartość dla małej próby populacji, która ma rozkład normalny i ma nieznane odchylenie standardowe. W przeciwieństwie do rozkładu normalnego, rozkład t zależy tylko od stopni swobody (M. Sobczyk 2007, s. 134-136). | ||
'''Rozkład t-Studenta jest używany w statystyce i metrologii. Opierają się one na dwóch podstawowych zasadach''' | |||
# zmienne losowe <math>X_1,X_2,...,X_n</math> mają taki sam rozkład prawdopodobieństwa, który jest rozkładem normalnym o średniej <math>m</math> i wariancji <math>\sigma^2</math>. Wówczas zmienna <math>t</math> ma rozkład Studenta o <math>v=n-1</math> stopniach swobody, | |||
# dwie próby o liczebności <math>n_1</math> oraz <math>n_2</math>, wartościach średnich <math>\bar{X_1}</math> oraz <math>\bar{X_2}</math> i wariancja określona z próby <math>s^2_1</math> oraz <math>s^2_2</math> wylosowane z populacji o jednakowym rozkładzie normalnym, powodują, że zmienna <math>t</math> będzie miała rozkład Studenta o <math>v=n_1+n_2-2</math>. | |||
Rozkład ten jest używany w testach parametrycznych, estymacji przedziałowej, testach średniej i wariancji oraz testach istotności, gdy wielkość próby jest mała, tj. gdy <math>n\leqslant30</math>. W metrologii rozkładu Studenta do oszacowania stosuje się odchylenie standardowe. Dla dużych próbek, gdzie<math>n\geqslant30</math> rozkład t-Studenta jest taki sam jak rozkład normalny, a dla mniejszych próbek estymator odchylenia standardowego należy pomnożyć przez wartość krytyczną rozkładu, w którym liczba stopni swobody wynosi <math>v=n-1</math>, a poziomem istotności jest wartość <math>\alpha</math> (M. Sobczyk 2007, s. 134-136). | |||
* Liczby próbek (n) czyli grupa osób, na podstawie której chcemy wyciągnąć wnioski na temat całej populacji. | '''Aby użyć rozkładu t-Studenta, potrzebujemy''' | ||
* Średnią dla naszej grupy ( | * Liczby próbek (<math>n</math>) czyli grupa osób, na podstawie której chcemy wyciągnąć wnioski na temat całej populacji. | ||
* Odchylenie standardowe dla naszej grupy (s) obliczane jako pierwiastek z sumy kwadratów odchyleń od średniej próby podzielonej przez liczbę elementów próby (n-1). | * Średnią dla naszej grupy (μ) | ||
* Średnią dla porównywanej grupy ( | * Odchylenie standardowe dla naszej grupy (<math>s</math>) obliczane jako pierwiastek z sumy kwadratów odchyleń od średniej próby podzielonej przez liczbę elementów próby (<math>n-1</math>). | ||
* Liczbę próbek w porównywanej grupie (n0) | * Średnią dla porównywanej grupy (μ0) czyli wartość, którą chcemy zweryfikować przy pomocy testu t-studenta. | ||
* Liczbę próbek w porównywanej grupie (<math>n0</math>) | |||
* Wartość średnia próby (x̄) - obliczana jako suma wartości wszystkich elementów próby podzielona przez jej liczbę. | * Wartość średnia próby (x̄) - obliczana jako suma wartości wszystkich elementów próby podzielona przez jej liczbę. | ||
t | '''Aby obliczyć''' czy nasza średnia różni się od średniej porównywanej grupy, obliczamy wartość t za pomocą następującego wzoru: | ||
<math>t=\frac{\mu - \mu 0}{\frac{s}{\sqrt{n}}}</math> | |||
Gdy mamy wartość <math>t</math>, możemy użyć tabeli rozkładu t-Studenta lub kalkulatora online, aby obliczyć <math>P</math>-wartość. | |||
<math>P</math>-wartość to prawdopodobieństwo, że nasza średnia jest taka sama, jak średnia porównywanej grupy przy założeniu, że nasza hipoteza jest prawdziwa. Jeśli <math>P</math>-wartość jest mniejsza niż poziom istotności (zazwyczaj 0,05), możemy odrzucić naszą hipotezę i stwierdzić, że nasza średnia różni się od średniej porównywanej grupy (A. Gardoń 2011, s.17-30). | |||
'''Rozkład t-Studenta''' jest używany głównie do testowania hipotez statystycznych. Może być również używany do oszacowania odchyleń standardowych dla małych próbek oraz do porównywania średnich w przypadku, gdy nie wiemy jaki jest rozkład populacji. W takich sytuacjach używa się testu t-Studenta, który pozwala nam ocenić, czy różnice między grupami są istotne statystycznie czy też są to tylko odchylenia losowe (E. Sojka, M. Balcerowicz-Szkutnik 2014, s.5-190). | |||
== | ==Przykład zastosowania== | ||
Badamy skuteczność nowego leku na grupie pacjentów i chcemy porównać średnią skuteczność leku w grupie z lekiem z średnią skutecznością leku w grupie z placebo. Możemy użyć testu t-Studenta, aby ocenić, czy różnica między średnimi jest istotna statystycznie (Koronacki J., Mielniczuk J., 2001, s. 319-372). | |||
Koronacki J. , Mielniczuk J. | |||
{{infobox5|list1={{i5link|a=[[Analiza regresji]]}} — {{i5link|a=[[Test t Studenta]]}} — {{i5link|a=[[Metody statystyczne]]}} — {{i5link|a=[[Wariancja]]}} — {{i5link|a=[[Przedział ufności]]}} — {{i5link|a=[[Średnia]]}} — {{i5link|a=[[Współczynnik korelacji rang Spearmana]]}} — {{i5link|a=[[Kwartyl]]}} — {{i5link|a=[[Estymator obciążony]]}} — {{i5link|a=[[Kompetencje poznawcze]]}} }} | |||
==Bibliografia== | |||
<noautolinks> | |||
* Biecek P. (2011), ''Przewodnik po pakiecie R'', Oficyna Wydawnicza GiS, Wrocław | |||
* Bobowski Z. (2004), ''Wybrane metody statystyki opisowej i wnioskowania statystycznego'', WWSZiP, Wałbrzych | |||
* Gardoń A. (2011), ''[https://dbc.wroc.pl/Content/34583/download/ Rozkład statystyki T-Studenta przy danej wariancji z próby o rozkładzie normalnym]'', Didactics of Mathematics, Nr 8 | |||
* Koronacki J., Mielniczuk J. (2006), ''Statystyka dla Studentów Kierunków Technicznych i Przyrodniczych'', Wydawnictwo Naukowo-Techniczne, Warszawa | |||
* Lipińska K. (2010), ''Rachunek prawdopodobieństwa i statystyka'', Ośrodek Kształcenia na Odległość Politechniki Warszawskiej OKNO, Warszawa | |||
* Magiera R. (2018), ''Modele i metody statystyki matematycznej'', Oficyna Wydawnicza GiS, Wrocław | |||
* Malska W. (2015), ''Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym'', Edukacja - Technika - Informatyka nr 3(13) | |||
* Sobczyk M. (2007), ''Statystyka'', Wydawnictwo Naukowe PWN, Warszawa | |||
* Sojka E., Balcerowicz-Szkutnik M. (2014), ''Statystyka opisowa dla ekonomistów'' Wydawnictwo Uniwersytetu Ekonomicznego, Katowice | |||
</noautolinks> | |||
[[Kategoria:Rozkład]] | |||
{{a|Angelika Kowalik}} | |||
{{#metamaster:description|Rozkład t-Studenta - używany do oceny różnic między grupami. Przydatny przy braku danych lub nieregularnym rozkładzie.}} | |||
{{ |
Aktualna wersja na dzień 00:40, 5 sty 2024
Rozkład t-Studenta (nazwa pochodzi od angielskiego matematyka i statystyka William Sealy Gosseta, który pracował pod pseudonimem Student) jest to rozkład statystyczny, który jest używany do oceny, czy średnia danej grupy różni się od innych grup. Jest to szczególnie przydatne, gdy nie mamy dużo danych i nie możemy założyć, że rozkład danych jest normalny. Stosowany w statystyce do testowania hipotez dotyczących wartości średniej dla małych prób lub gdy nie wiadomo jaka jest wartość odchylenia standardowego dla badanej populacji (M. Sobczyk 2007, s. 13-27).
TL;DR
Rozkład t-Studenta to rozkład statystyczny używany do porównywania średnich wartości między grupami, szczególnie w przypadku małej liczby danych i nieznanego rozkładu populacji. Jest symetryczny i podobny do rozkładu normalnego, ale ma bardziej rozstawione skrzydła. Liczba stopni swobody określa kształt rozkładu. Jest używany w testach parametrycznych i estymacji przedziałowej, zwłaszcza gdy liczba próbek jest mała. Do obliczenia wartości t używamy wzoru z wykorzystaniem średniej i odchylenia standardowego próby. Rozkład t-Studenta jest stosowany do testowania hipotez statystycznych i estymacji odchyleń standardowych dla małych próbek.
Rozkład t-Studenta
Rozkład t-Studenta jest podobny do rozkładu normalnego, ale ma bardziej "rozstawione" skrzydła, co oznacza, że prawdopodobieństwo wystąpienia bardzo odległych wartości jest większe niż w przypadku rozkładu normalnego. Rozkład t - studenta jest rozkładem symetrycznym, jednomodalnym (ma jedną "górkę"). Im mniej obserwacji, tym szerszy rozkład.
Główne cechy rozkładu t-Studenta to
- Symetryczność: rozkład t-Studenta jest symetryczny względem średniej.
- Kształt: rozkład t-Studenta ma kształt podobny do kształtu rozkładu normalnego, ale jest bardziej "rozciągnięty" w kierunku skrajnych wartości.
- Wypukłość: rozkład t-Studenta jest wypukły, co oznacza, że prawdopodobieństwo wystąpienia wartości blisko średniej jest większe niż prawdopodobieństwo wystąpienia wartości skrajnych (Biecek P. 2011, s. 170-212).
Wzór na gęstość prawdopodobieństwa rozkładu t-Studenta
Gdzie
- to liczba stopni swobody,
γ - to funkcja gamma,
- to wartość, dla której obliczamy prawdopodobieństwo. Liczba stopni swobody określa kształt rozkładu t-Studenta. Im większa liczba stopni swobody, tym bardziej rozkład t-Studenta przypomina rozkład normalny. Dla dużych wartości rozkład t-Studenta jest bardzo zbliżony do rozkładu normalnego (Biecek P. 2011, s. 170-212).
Rozkład t-Studenta znany również jako rozkład t jest modelem teoretycznym używanym do aproksymacji momentu pierwszego rzędu populacji o rozkładzie normalnym z małą liczebnością próby i nieznanym odchyleniem standardowym. Jest to rozkład prawdopodobieństwa, który zapewnia wartość dla małej próby populacji, która ma rozkład normalny i ma nieznane odchylenie standardowe. W przeciwieństwie do rozkładu normalnego, rozkład t zależy tylko od stopni swobody (M. Sobczyk 2007, s. 134-136). Rozkład t-Studenta jest używany w statystyce i metrologii. Opierają się one na dwóch podstawowych zasadach
- zmienne losowe mają taki sam rozkład prawdopodobieństwa, który jest rozkładem normalnym o średniej i wariancji . Wówczas zmienna ma rozkład Studenta o stopniach swobody,
- dwie próby o liczebności oraz , wartościach średnich oraz i wariancja określona z próby oraz wylosowane z populacji o jednakowym rozkładzie normalnym, powodują, że zmienna będzie miała rozkład Studenta o .
Rozkład ten jest używany w testach parametrycznych, estymacji przedziałowej, testach średniej i wariancji oraz testach istotności, gdy wielkość próby jest mała, tj. gdy . W metrologii rozkładu Studenta do oszacowania stosuje się odchylenie standardowe. Dla dużych próbek, gdzie rozkład t-Studenta jest taki sam jak rozkład normalny, a dla mniejszych próbek estymator odchylenia standardowego należy pomnożyć przez wartość krytyczną rozkładu, w którym liczba stopni swobody wynosi , a poziomem istotności jest wartość (M. Sobczyk 2007, s. 134-136).
Aby użyć rozkładu t-Studenta, potrzebujemy
- Liczby próbek () czyli grupa osób, na podstawie której chcemy wyciągnąć wnioski na temat całej populacji.
- Średnią dla naszej grupy (μ)
- Odchylenie standardowe dla naszej grupy () obliczane jako pierwiastek z sumy kwadratów odchyleń od średniej próby podzielonej przez liczbę elementów próby ().
- Średnią dla porównywanej grupy (μ0) czyli wartość, którą chcemy zweryfikować przy pomocy testu t-studenta.
- Liczbę próbek w porównywanej grupie ()
- Wartość średnia próby (x̄) - obliczana jako suma wartości wszystkich elementów próby podzielona przez jej liczbę.
Aby obliczyć czy nasza średnia różni się od średniej porównywanej grupy, obliczamy wartość t za pomocą następującego wzoru:
Gdy mamy wartość , możemy użyć tabeli rozkładu t-Studenta lub kalkulatora online, aby obliczyć -wartość. -wartość to prawdopodobieństwo, że nasza średnia jest taka sama, jak średnia porównywanej grupy przy założeniu, że nasza hipoteza jest prawdziwa. Jeśli -wartość jest mniejsza niż poziom istotności (zazwyczaj 0,05), możemy odrzucić naszą hipotezę i stwierdzić, że nasza średnia różni się od średniej porównywanej grupy (A. Gardoń 2011, s.17-30).
Rozkład t-Studenta jest używany głównie do testowania hipotez statystycznych. Może być również używany do oszacowania odchyleń standardowych dla małych próbek oraz do porównywania średnich w przypadku, gdy nie wiemy jaki jest rozkład populacji. W takich sytuacjach używa się testu t-Studenta, który pozwala nam ocenić, czy różnice między grupami są istotne statystycznie czy też są to tylko odchylenia losowe (E. Sojka, M. Balcerowicz-Szkutnik 2014, s.5-190).
Przykład zastosowania
Badamy skuteczność nowego leku na grupie pacjentów i chcemy porównać średnią skuteczność leku w grupie z lekiem z średnią skutecznością leku w grupie z placebo. Możemy użyć testu t-Studenta, aby ocenić, czy różnica między średnimi jest istotna statystycznie (Koronacki J., Mielniczuk J., 2001, s. 319-372).
Rozkład t-Studenta — artykuły polecane |
Analiza regresji — Test t Studenta — Metody statystyczne — Wariancja — Przedział ufności — Średnia — Współczynnik korelacji rang Spearmana — Kwartyl — Estymator obciążony — Kompetencje poznawcze |
Bibliografia
- Biecek P. (2011), Przewodnik po pakiecie R, Oficyna Wydawnicza GiS, Wrocław
- Bobowski Z. (2004), Wybrane metody statystyki opisowej i wnioskowania statystycznego, WWSZiP, Wałbrzych
- Gardoń A. (2011), Rozkład statystyki T-Studenta przy danej wariancji z próby o rozkładzie normalnym, Didactics of Mathematics, Nr 8
- Koronacki J., Mielniczuk J. (2006), Statystyka dla Studentów Kierunków Technicznych i Przyrodniczych, Wydawnictwo Naukowo-Techniczne, Warszawa
- Lipińska K. (2010), Rachunek prawdopodobieństwa i statystyka, Ośrodek Kształcenia na Odległość Politechniki Warszawskiej OKNO, Warszawa
- Magiera R. (2018), Modele i metody statystyki matematycznej, Oficyna Wydawnicza GiS, Wrocław
- Malska W. (2015), Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym, Edukacja - Technika - Informatyka nr 3(13)
- Sobczyk M. (2007), Statystyka, Wydawnictwo Naukowe PWN, Warszawa
- Sojka E., Balcerowicz-Szkutnik M. (2014), Statystyka opisowa dla ekonomistów Wydawnictwo Uniwersytetu Ekonomicznego, Katowice
Autor: Angelika Kowalik