Współczynnik asymetrii: Różnice pomiędzy wersjami

Z Encyklopedia Zarządzania
Nie podano opisu zmian
Nie podano opisu zmian
Linia 9: Linia 9:
==Kierunki asymetrii==
==Kierunki asymetrii==
W zależności od wartości współczynnika asymetrii, występującego jako '''miara pozycyjna''', wyróżnia się następujące kierunki asymetrii:
W zależności od wartości współczynnika asymetrii, występującego jako '''miara pozycyjna''', wyróżnia się następujące kierunki asymetrii:
* rozkład symetryczny '''lewostronnie''' (skośność lewostronna, asymetria ujemna) wstępuje, gdy <math> A_s<0 </math> a rozkład ma dłuższy lewy "ogon". Dla rozkładu o asymetrii lewostronnej <math>\bar{x}<M_e<M_o </math>
* rozkład symetryczny '''lewostronnie''' (skośność lewostronna, asymetria ujemna) wstępuje, gdy <math> A_s<0 </math> a lewy ogon rozkładu jest dłuższy niż prawy. Dla rozkładu o asymetrii lewostronnej średnia arytmetyczna ma niższą wartość niż mediana, której wartość jest niższa niż wartość mody: <math>\bar{x}<M_e<M_o </math>,
* rozkład symetryczny '''prawostronnie''' (skośność prawostronna, asymetria dodatnia) występuje, gdy <math> A_s>0 </math> a rozkład ma dłuższy prawy "ogon". Dla rozkładu o asymetrii prawostronnej <math>\bar{x}>M_e>M_o </math>
* rozkład symetryczny '''prawostronnie''' (skośność prawostronna, asymetria dodatnia) występuje, gdy <math> A_s>0 </math> a prawy ogon rozkładu jest dłuższy niż lewy. Dla rozkładu o asymetrii prawostronnej średnia arytmetyczna ma wyższą wartość niż mediana, której wartość jest wyższa niż wartość mody: <math>\bar{x}>M_e>M_o </math>,
* rozkład '''symetryczny''' - dla <math>\bar{x}=M_e=M_o </math>
* rozkład '''symetryczny''' - występuje dla rozkładu, w którym wartość średniej arytmetycznej, mediany i mody są sobie równe: <math>\bar{x}=M_e=M_o </math>.


==Klasyfikacja asymetrii==
==Klasyfikacja asymetrii==

Wersja z 18:27, 24 kwi 2022

Współczynnik asymetrii (współczynnik skośności) - jedna z miar asymetrii określająca kierunek i siłę asymetrii rozkładu wyrażona w postaci wzoru: gdzie to średnia arytmetyczna dla grupy, to moda (dominanta), s to odchylenie standardowe.


Wskaźnik asymetrii (wskaźnik skośności), w odróżnieniu do współczynnika asymetrii (współczynnika skośności) bada jedynie wartość różnicy między średnią arytmetyczną a modalną i jest wyrażony wzorem:

Kierunki asymetrii

W zależności od wartości współczynnika asymetrii, występującego jako miara pozycyjna, wyróżnia się następujące kierunki asymetrii:

  • rozkład symetryczny lewostronnie (skośność lewostronna, asymetria ujemna) wstępuje, gdy a lewy ogon rozkładu jest dłuższy niż prawy. Dla rozkładu o asymetrii lewostronnej średnia arytmetyczna ma niższą wartość niż mediana, której wartość jest niższa niż wartość mody: ,
  • rozkład symetryczny prawostronnie (skośność prawostronna, asymetria dodatnia) występuje, gdy a prawy ogon rozkładu jest dłuższy niż lewy. Dla rozkładu o asymetrii prawostronnej średnia arytmetyczna ma wyższą wartość niż mediana, której wartość jest wyższa niż wartość mody: ,
  • rozkład symetryczny - występuje dla rozkładu, w którym wartość średniej arytmetycznej, mediany i mody są sobie równe: .

Klasyfikacja asymetrii

Asymetrie rozkładu klasyfikuje się najczęściej do jednej z poniższych reguł:

  • rozkład symetryczny - dla ; liczebności rozmieszczone są jednakowo dla wartości cech w tej samej odległości od środka asymetrii (średniej arytmetycznej),
  • słaba asymetria - dla ,
  • umiarkowana asymetria - dla ,
  • silna asymetria - dla .

Podział miar asymetrii

Dla miar asymetrii wyróżnia się następujące miary:

  • bezwzględne - określające kierunek asymetrii
  1. wskaźnik asymetrii
  2. kwartylowy wskaźnik asymetrii
  3. trzeci moment centralny
  • względne - określające kierunek oraz siłę asymetrii
  1. klasyczno-pozycyjny współczynnik skośności (asymetrii)
  2. kwartylowy współczynnik skośności (asymetrii)
  3. absolutna miara asymetrii (trzeci moment centralny standaryzowany) - wynik miary może być uzyskany za pomocą obliczenia szeregu szczegółowego, rozdzielczego punktowego (jednostajnego) lub szeregu rodzielczego przedziałowego.

Przypisy


Bibliografia


Autor: Mariola Karasińska

[[Kategoria:]]