Współczynnik asymetrii: Różnice pomiędzy wersjami

Z Encyklopedia Zarządzania
Nie podano opisu zmian
Nie podano opisu zmian
Linia 12: Linia 12:
==Kierunki asymetrii==
==Kierunki asymetrii==
W zależności od wartości współczynnika asymetrii wyróżnia się następujące kierunki asymetrii:
W zależności od wartości współczynnika asymetrii wyróżnia się następujące kierunki asymetrii:
* rozkład symetryczny lewostronnie (skośność lewostronna),
* rozkład symetryczny lewostronnie (skośność lewostronna) wstępuje, gdy <math> A_s<0 </math>,
* rozkład symetryczny prawostronnie (skośność prawostronna).
* rozkład symetryczny prawostronnie (skośność prawostronna) występuje, gdy <math> A_s>0 </math>.


==Podział miar asymetrii ==
==Podział miar asymetrii ==

Wersja z 17:54, 24 kwi 2022

Współczynnik asymetrii (współczynnik skośności) - jedna z miar asymetrii określająca kierunek i siłę asymetrii rozkładu wyrażona w postaci wzoru: gdzie to a to

Klasyfikacja asymetrii

Asymetrie rozkładu klasyfikuje się najczęściej do jednej z poniższych reguł:

  • rozkład symetryczny - dla ; liczebności rozmieszczone są jednakowo dla wartości cech w tej samej odległości od środka asymetrii (średniej arytmetycznej),
  • słaba asymetria - dla ,
  • umiarkowana asymetria - dla ,
  • silna asymetria - dla .

Kierunki asymetrii

W zależności od wartości współczynnika asymetrii wyróżnia się następujące kierunki asymetrii:

  • rozkład symetryczny lewostronnie (skośność lewostronna) wstępuje, gdy ,
  • rozkład symetryczny prawostronnie (skośność prawostronna) występuje, gdy .

Podział miar asymetrii

Dla miar asymetrii wyróżnia się następujące miary:

  • bezwzględne - określające kierunek asymetrii
  1. wskaźnik asymetrii
  2. kwartylowy wskaźnik asymetrii
  3. trzeci moment centralny
  • względne - określające kierunek oraz siłę asymetrii
  1. klasyczno-pozycyjny współczynnik skośności (asymetrii)
  2. kwartylowy współczynnik skośności (asymetrii)
  3. absolutna miara asymetrii (trzeci moment centralny standaryzowany) - wynik miary może być uzyskany za pomocą obliczenia szeregu szczegółowego, rozdzielczego punktowego (jednostajnego) lub szeregu rodzielczego przedziałowego.

Przypisy


Bibliografia


Autor: Mariola Karasińska

[[Kategoria:]]