Współczynnik asymetrii: Różnice pomiędzy wersjami
Nie podano opisu zmian |
Nie podano opisu zmian |
||
| Linia 12: | Linia 12: | ||
==Kierunki asymetrii== | ==Kierunki asymetrii== | ||
W zależności od wartości współczynnika asymetrii wyróżnia się następujące kierunki asymetrii: | W zależności od wartości współczynnika asymetrii wyróżnia się następujące kierunki asymetrii: | ||
* rozkład symetryczny lewostronnie (skośność lewostronna) wstępuje, gdy <math> A_s<0 </math> | * rozkład symetryczny lewostronnie (skośność lewostronna, asymetria ujemna) wstępuje, gdy <math> A_s<0 </math> a rozkład ma dłuższy lewy "ogon" | ||
* rozkład symetryczny prawostronnie (skośność prawostronna) występuje, gdy <math> A_s>0 </math> | * rozkład symetryczny prawostronnie (skośność prawostronna, asymetria dodatnia) występuje, gdy <math> A_s>0 </math> a rozkład ma dłuższy prawy "ogon" | ||
==Podział miar asymetrii == | ==Podział miar asymetrii == | ||
Wersja z 17:59, 24 kwi 2022
Współczynnik asymetrii (współczynnik skośności) - jedna z miar asymetrii określająca kierunek i siłę asymetrii rozkładu wyrażona w postaci wzoru: Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle A_s=\bar{x}-D} gdzie Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle \bar{x} } to a Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle D } to
Klasyfikacja asymetrii
Asymetrie rozkładu klasyfikuje się najczęściej do jednej z poniższych reguł:
- rozkład symetryczny - dla Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle A_s=0} ; liczebności rozmieszczone są jednakowo dla wartości cech w tej samej odległości od środka asymetrii (średniej arytmetycznej),
- słaba asymetria - dla Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle 0 < A_s < 0, 4 } ,
- umiarkowana asymetria - dla Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle 0,4 < A_s < 0,7 } ,
- silna asymetria - dla Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle A_s>7 } .
Kierunki asymetrii
W zależności od wartości współczynnika asymetrii wyróżnia się następujące kierunki asymetrii:
- rozkład symetryczny lewostronnie (skośność lewostronna, asymetria ujemna) wstępuje, gdy Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle A_s<0 } a rozkład ma dłuższy lewy "ogon"
- rozkład symetryczny prawostronnie (skośność prawostronna, asymetria dodatnia) występuje, gdy Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle A_s>0 } a rozkład ma dłuższy prawy "ogon"
Podział miar asymetrii
Dla miar asymetrii wyróżnia się następujące miary:
- bezwzględne - określające kierunek asymetrii
- wskaźnik asymetrii
- kwartylowy wskaźnik asymetrii
- trzeci moment centralny
- względne - określające kierunek oraz siłę asymetrii
- klasyczno-pozycyjny współczynnik skośności (asymetrii)
- kwartylowy współczynnik skośności (asymetrii)
- absolutna miara asymetrii (trzeci moment centralny standaryzowany) - wynik miary może być uzyskany za pomocą obliczenia szeregu szczegółowego, rozdzielczego punktowego (jednostajnego) lub szeregu rodzielczego przedziałowego.
Przypisy
Bibliografia
- Marciniak S., (2004), Controlling filozofia projektowanie, Difin, Warszawa, s. 150, 152
- Nowak E., (2015), ilościowe w rachunku kosztów przedsiębiorstwa, Journal of Management and Finance, nr 13, s. 341
Autor: Mariola Karasińska
[[Kategoria:]]
