Współczynnik asymetrii: Różnice pomiędzy wersjami
Nie podano opisu zmian |
Nie podano opisu zmian |
||
Linia 25: | Linia 25: | ||
# wskaźnik asymetrii | # wskaźnik asymetrii | ||
Wskaźnik asymetrii (wskaźnik skośności) w odróżnieniu do współczynnika asymetrii (współczynnika skośności) bada jedynie wartość różnicy między średnią arytmetyczną a modalną i może być wyrażony wzorem: <math>{\bar{x}-M_o}</math> lub wzorem: <math> (Q_3-Q-2)-(Q_2-Q_1)=Q_3+Q_1-2M_e </math> | Wskaźnik asymetrii (wskaźnik skośności) w odróżnieniu do współczynnika asymetrii (współczynnika skośności) bada jedynie wartość różnicy między średnią arytmetyczną a modalną i może być wyrażony wzorem: <math>{\bar{x}-M_o}</math> lub wzorem: <math> (Q_3-Q-2)-(Q_2-Q_1)=Q_3+Q_1-2M_e </math> | ||
Dla wskaźnika asymetrii, analogicznie jak dla współczynnika asymetrii, można wyróżnić trzy rodzaje rozkładu: symetryczny (dla <math>\bar{x}=M_e=M_o </math>), asymetryczny lewostronnie (dla <math>\bar{x}<M_e<M_o </math>) oraz asymetryczny prawostronnie (dla <math>\bar{x}>M_e>M_o </math>). | Dla wskaźnika asymetrii, analogicznie jak dla współczynnika asymetrii, można wyróżnić trzy rodzaje rozkładu: symetryczny (dla <math>\bar{x}=M_e=M_o </math>), asymetryczny lewostronnie (dla <math>\bar{x}<M_e<M_o </math>) oraz asymetryczny prawostronnie (dla <math>\bar{x}>M_e>M_o </math>), jednak nie może wyznaczyć on siły asymetrii, ponieważ cechy wyrażone są w jednostkach bezwzględnych. | ||
# kwartylowy wskaźnik asymetrii | # kwartylowy wskaźnik asymetrii | ||
# trzeci moment centralny (moment centralny trzeciego rzędu) - wynik uzyskiwany przy wykorzystaniu szeregu prostego (wyliczającego), punktowego (jednostopniowego) lub szeregu przedziałowego w zależności od rodzaju dostępnych danych. Informuje o kierunku asymetrii i pozwala wykorzystać zarówno dane niezgrupowane jak i dane zgrupowane. | # trzeci moment centralny (moment centralny trzeciego rzędu) - wynik uzyskiwany przy wykorzystaniu szeregu prostego (wyliczającego), punktowego (jednostopniowego) lub szeregu przedziałowego w zależności od rodzaju dostępnych danych. Informuje o kierunku asymetrii i pozwala wykorzystać zarówno dane niezgrupowane jak i dane zgrupowane. |
Wersja z 22:29, 24 kwi 2022
Współczynnik asymetrii (współczynnik skośności) - jedna z miar asymetrii określająca kierunek i siłę asymetrii rozkładu wyrażona w postaci wzoru: gdzie to średnia arytmetyczna dla grupy, to moda (dominanta), s to odchylenie standardowe. Współczynnik skośności jest narzędziem często wykorzystywanym w analizie statystycznej pozwalającym na interpretację rozkładu danych i informującym o równomierności rozłożenia cech w badanym zbiorze.
Istnieje też możliwość wyznaczenia współczynnika asymetrii wykorzystując kwartyle () oraz odchylenie ćwiartkowe (). Wykorzystywany jest wtedy następujący wzór: a do prezentacji wartości kwatyli używany jest wykres pudełkowy.
Kierunki asymetrii
W zależności od wartości współczynnika asymetrii, występującego jako miara pozycyjna, wyróżnia się następujące kierunki asymetrii:
- rozkład asymetryczny lewostronnie (skośność lewostronna, asymetria ujemna) wstępuje, gdy a lewy ogon rozkładu jest dłuższy niż prawy. W rozkładzie większą część stanowią jednostki o wartości cechy poniżej wyznaczonej średniej. Dla rozkładu o asymetrii lewostronnej średnia arytmetyczna ma niższą wartość niż mediana, której wartość jest niższa niż wartość mody:
- rozkład asymetryczny prawostronnie (skośność prawostronna, asymetria dodatnia) występuje, gdy a prawy ogon rozkładu jest dłuższy niż lewy. W rozkładzie większą część stanowią jednostki o wartości cechy poniżej wyznaczonej średniej. Dla rozkładu o asymetrii prawostronnej średnia arytmetyczna ma wyższą wartość niż mediana, której wartość jest wyższa niż wartość mody:
- rozkład symetryczny - występuje dla rozkładu, w którym wartość średniej arytmetycznej, mediany i mody są sobie równe:
Klasyfikacja siły asymetrii
Współczynnik asymetrii stosowany w porównaniach wskazuje kierunek asymetrii. Im większa wartość, tym silniejsza asymetria. Asymetrie rozkładu klasyfikuje się najczęściej do jednej z poniższych reguł:
- rozkład symetryczny - dla ; liczebności rozmieszczone są jednakowo dla wartości cech w tej samej odległości od środka asymetrii (średniej arytmetycznej),
- słaba asymetria - dla ,
- umiarkowana asymetria - dla ,
- silna asymetria - dla .
Podział miar asymetrii
Dla miar asymetrii wyróżnia się następujące miary:
- bezwzględne - określające kierunek asymetrii
- wskaźnik asymetrii
Wskaźnik asymetrii (wskaźnik skośności) w odróżnieniu do współczynnika asymetrii (współczynnika skośności) bada jedynie wartość różnicy między średnią arytmetyczną a modalną i może być wyrażony wzorem: lub wzorem: Dla wskaźnika asymetrii, analogicznie jak dla współczynnika asymetrii, można wyróżnić trzy rodzaje rozkładu: symetryczny (dla ), asymetryczny lewostronnie (dla ) oraz asymetryczny prawostronnie (dla ), jednak nie może wyznaczyć on siły asymetrii, ponieważ cechy wyrażone są w jednostkach bezwzględnych.
- kwartylowy wskaźnik asymetrii
- trzeci moment centralny (moment centralny trzeciego rzędu) - wynik uzyskiwany przy wykorzystaniu szeregu prostego (wyliczającego), punktowego (jednostopniowego) lub szeregu przedziałowego w zależności od rodzaju dostępnych danych. Informuje o kierunku asymetrii i pozwala wykorzystać zarówno dane niezgrupowane jak i dane zgrupowane.
- względne - określające kierunek oraz siłę asymetrii. Wielkość współczynników determinuje siłę asymetrii.
- klasyczno-pozycyjny współczynnik skośności (asymetrii)
- kwartylowy współczynnik skośności (asymetrii)
- absolutna miara asymetrii standaryzowany (trzeci moment centralny standaryzowany) - wynik miary może być uzyskany za pomocą obliczenia szeregu szczegółowego, rozdzielczego punktowego (jednostajnego) lub szeregu rodzielczego przedziałowego.
Przypisy
Bibliografia
- Marciniak S., (2004), Controlling filozofia projektowanie, Difin, Warszawa, s. 150, 152
- Nowak E., (2015), ilościowe w rachunku kosztów przedsiębiorstwa, Journal of Management and Finance, nr 13, s. 341
Autor: Mariola Karasińska