Rozkład t-Studenta
Rozkład t-Studenta (nazwa pochodzi od angielskiego matematyka i statystyka William Sealy Gosseta, który pracował pod pseudonimem Student) jest to rozkład statystyczny, który jest używany do oceny, czy średnia danej grupy różni się od innych grup. Jest to szczególnie przydatne, gdy nie mamy dużo danych i nie możemy założyć, że rozkład danych jest normalny. Stosowany w statystyce do testowania hipotez dotyczących wartości średniej dla małych prób lub gdy nie wiadomo jaka jest wartość odchylenia standardowego dla badanej populacji.
Rozkład t-studenta
Rozkład t-Studenta jest podobny do rozkładu normalnego, ale ma bardziej "rozstawione" skrzydła, co oznacza, że prawdopodobieństwo wystąpienia bardzo odległych wartości jest większe niż w przypadku rozkładu normalnego. Rozkład t- studenta jest rozkładem symetrycznym, jednomodalnym (ma jedną „górkę”). Im mniej obserwacji, tym szerszy rozkład.
Główne cechy rozkładu t-Studenta to
- Symetryczność: rozkład t-Studenta jest symetryczny względem średniej.
- Kształt: rozkład t-Studenta ma kształt podobny do kształtu rozkładu normalnego, ale jest bardziej "rozciągnięty" w kierunku skrajnych wartości.
- Wypukłość: rozkład t-Studenta jest wypukły, co oznacza, że prawdopodobieństwo wystąpienia wartości blisko średniej jest większe niż prawdopodobieństwo wystąpienia wartości skrajnych.
Wzór na gęstość prawdopodobieństwa rozkładu t-Studenta
Parser nie mógł rozpoznać (błąd składni): {\displaystyle f(x) = \frac{γ(\frac{n+1}{2})}{γ(\frac{n}{2})\sqrt{nπ}}(1+\frac{t^2}{n})^{-\frac{n+1}{2}}}
Gdzie
- to liczba stopni swobody,
γ - to funkcja gamma,
- to wartość, dla której obliczamy prawdopodobieństwo. Liczba stopni swobody n określa kształt rozkładu t-Studenta. Im większa liczba stopni swobody, tym bardziej rozkład t-Studenta przypomina rozkład normalny. Dla dużych wartości ν rozkład t-Studenta jest bardzo zbliżony do rozkładu normalnego.
Rozkład t-Studenta znany również jako rozkład t, jest modelem teoretycznym używanym do aproksymacji momentu pierwszego rzędu populacji o rozkładzie normalnym z małą liczebnością próby i nieznanym odchyleniem standardowym. Jest to rozkład prawdopodobieństwa, który zapewnia wartość dla małej próby populacji, która ma rozkład normalny i ma nieznane odchylenie standardowe. W przeciwieństwie do rozkładu normalnego, rozkład t zależy tylko od stopni swobody (M. Sobczyk 2007, s. 134-136). Rozkład t-Studenta jest używany w statystyce i metrologii. Opierają się one na dwóch podstawowych zasadach
- zmienne losowe Parser nie mógł rozpoznać (błąd składni): {\displaystyle X_1,X_2,…X_n} mają taki sam rozkład prawdopodobieństwa, który jest rozkładem normalnym o średniej i wariancji Parser nie mógł rozpoznać (błąd składni): {\displaystyle σ^2} . Wówczas zmienna ma rozkład Studenta o stopniach swobody,
- dwie próby o liczebności oraz , wartościach średnich oraz i wariancja określona z próby oraz wylosowane z populacji o jednakowym rozkładzie normalnym, powodują, że zmienna będzie miała rozkład Studenta o .
Rozkład ten jest używany w testach parametrycznych, estymacji przedziałowej, testach średniej i wariancji oraz testach istotności, gdy wielkość próby jest mała, tj. gdy . W metrologii rozkładu Studenta do oszacowania stosuje się odchylenie standardowe. Dla dużych próbek, gdzie rozkład t-Studenta jest taki sam jak rozkład normalny, a dla mniejszych próbek estymator odchylenia standardowego należy pomnożyć przez wartość krytyczną rozkładu, w którym liczba stopni swobody wynosi , a poziomem istotności jest wartość Parser nie mógł rozpoznać (błąd składni): {\displaystyle α} (M. Sobczyk 2007, s. 134-136).
Aby użyć rozkładu t-Studenta, potrzebujemy kilku rzeczy
- Liczby próbek () czyli grupa osób, na podstawie której chcemy wyciągnąć wnioski na temat całej populacji.
- Średnią dla naszej grupy (μ)
- Odchylenie standardowe dla naszej grupy () obliczane jako pierwiastek z sumy kwadratów odchyleń od średniej próby podzielonej przez liczbę elementów próby ().
- Średnią dla porównywanej grupy (μ0) czyli wartość, którą chcemy zweryfikować przy pomocy testu t-studenta.
- Liczbę próbek w porównywanej grupie ()
- Wartość średnia próby (Parser nie mógł rozpoznać (błąd składni): {\displaystyle x̄} ) - obliczana jako suma wartości wszystkich elementów próby podzielona przez jej liczbę.
Aby obliczyć czy nasza średnia różni się od średniej porównywanej grupy, obliczamy wartość t za pomocą następującego wzoru:
Parser nie mógł rozpoznać (błąd składni): {\displaystyle t=\frac{μ-μ0}{\frac{s}{\sqrt{n}}}}
Gdy mamy wartość t, możemy użyć tabeli rozkładu t-Studenta lub kalkulatora online, aby obliczyć p-wartość. -wartość to prawdopodobieństwo, że nasza średnia jest taka sama, jak średnia porównywanej grupy przy założeniu, że nasza hipoteza jest prawdziwa. Jeśli p-wartość jest mniejsza niż poziom istotności (zazwyczaj 0,05), możemy odrzucić naszą hipotezę i stwierdzić, że nasza średnia różni się od średniej porównywanej grupy (A. Gardoń 2011, s.17-30).
Rozkład t-Studenta jest używany głównie do testowania hipotez statystycznych. Może być również używany do oszacowania odchyleń standardowych dla małych próbek oraz do porównywania średnich w przypadku, gdy nie wiemy jaki jest rozkład populacji. W takich sytuacjach używa się testu t-Studenta, który pozwala nam ocenić, czy różnice między grupami są istotne statystycznie czy też są to tylko odchylenia losowe.
Przykład zastosowania
Badamy skuteczność nowego leku na grupie pacjentów i chcemy porównać średnią skuteczność leku w grupie z lekiem z średnią skutecznością leku w grupie z placebo. Możemy użyć testu t-Studenta, aby ocenić, czy różnica między średnimi jest istotna statystycznie (Koronacki J. , Mielniczuk J., 2001, s. 319-372).
Bibliografia
- Biecek P. (2011), Przewodnik po pakiecie R, Oficyna Wydawnicza GiS, Wrocław
- Bobowski Z. (2004), Wybrane metody statystyki opisowej w wnioskowania statystycznego, Wydawnictwo WWSZiP
- Gardoń A. (2011), Rozkład statystyki T-Studenta przy danej wariancji z próby o rozkładzie normalnym, "Didactics of Mathematics", Nr 8
- Koronacki J. , Mielniczuk J., Statystyka dla studentów kierunków technicznych i przyrodniczych, WNT, Warszawa, 2001
- Lipińska K. (2010), Rachunek prawdopodobieństwa i statystyka, Ośrodek Kształcenia na Odległość Politechniki Warszawskiej OKNO, Warszawa
- Malska W. (2015), Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym, „Edukacja – Technika – Informatyka” nr 3
- Sobczyk M. (2007), Statystyka, Wydawnictwo Naukowe PWN, Warszawa
Autor: Angelika Kowalik