Test t Studenta: Różnice pomiędzy wersjami

Z Encyklopedia Zarządzania
Nie podano opisu zmian
Linia 29: Linia 29:
# '''dla jednej próby'''
# '''dla jednej próby'''
''Czy wpływy ze sztabów WOŚP w woj. Lubelskim różnią się od średniej z ubiegłego roku?''
''Czy wpływy ze sztabów WOŚP w woj. Lubelskim różnią się od średniej z ubiegłego roku?''
''Czy inteligencja studentów z UEK różni się od średniej w populacji?''
''Czy inteligencja studentów z UEK różni się od średniej w populacji?''
# '''dla prób skorelowanych (zależnych)'''
# '''dla prób skorelowanych (zależnych)'''
''Czy słuchanie muzyki podczas rozwiązywania zadań wydłuża czas znalezienia rozwiązania?''
''Czy słuchanie muzyki podczas rozwiązywania zadań wydłuża czas znalezienia rozwiązania?''
''Czy istnieje różnica między wysokością zarobków na początku zatrudnienia a wysokością zarobków po 5 latach pracy?''  
''Czy istnieje różnica między wysokością zarobków na początku zatrudnienia a wysokością zarobków po 5 latach pracy?''  
# '''dla prób nieskorelowanych (niezależnych)'''
# '''dla prób nieskorelowanych (niezależnych)'''
''Czy kobiety i mężczyźni różnią się liczbą podejść do egzaminy na prawo jazdy?''
''Czy kobiety i mężczyźni różnią się liczbą podejść do egzaminy na prawo jazdy?''
''Czy mieszkańcy miast i wsi różnią się od siebie wysokością zarobków?''  
 
''Czy mieszkańcy miast i wsi różnią się od siebie wysokością zarobków?''


==Bibliografia==
==Bibliografia==

Wersja z 19:23, 28 kwi 2022

Test t- Studenta jest wykorzystywany w celu porównania grup, dla których mamy wyniki, czyli chcemy stwierdzić czy wyniki w jednej grupie są większe bądź mniejsze niż w drugiej grupie. Testu t- Studenta nie należy wykonywać dla więcej niż dwóch grup. Odpowiada on na pytanie czy średnie wartości badanych zmiennych w dwóch grupach różnią się od siebie statystycznie istotnie (M. Sobczyk 2007, s. 134-136).

Założenia testów t-Studenta

Założenie testów t-Studenta jest następujące (M. Sobczyk 2007, s. 134-136):

  1. rozkład wyników zmiennej zależnej w badanych grupach jest zbliżony do rozkładu normalnego,
  2. porównywane grupy są podobne pod kątem ilości badanych osób,
  3. homogeniczność wariancji, tzn. wariancje w grupach badanych są do siebie podobne
  4. zmienna zależna powinna być mierzona na skali ilościowej

Test t- Studenta jest testem parametrycznym, czyli opiera się na obliczaniu wartości średniej i odchylenia standardowego. Posiadając zmienne mierzone w skali porządkowej czy nominalnej obliczenie wartości za pomocą t-Studenta nie jest możliwe. W tym przypadku powinien zostać zastosowany jego odpowiedni dla testów nieparametrycznych, a mianowicie test U Manna-Whitneya (M. Sobczyk 2007, s. 134-136).

Rodzaje testów

Istnieją trzy rodzaje testu t-Studenta (W. Malska 2015, s. 326):

  • dla prób niezależnych – ocenia różnice między niezależnymi grupami np. między grupą kontrolną a eksperymentalną, kobietami a mężczyznami czy grupą starszych i młodszych. Aby wyniki wyszły prawidłowe należy mieć na uwadze takie czynniki jak: pomiar ilościowy zmiennej zależnej, zmienna niezależna powinna być dychotomiczna, rozkład w grupach powinien być normalny, wariancje oraz liczebność grup jest zbliżona. Porównanie grupy badanych następuje z wykorzystaniem testu zgodności chi-kwadrat (test Pearsona). Wzór dla prób niezależnych wygląda następująco (W. Malska 2015, s. 326):

  • dla prób zależnych – Jest to klasyczny przykład testu wykonywanego przed i po zaistniałej zmianie. W odróżnieniu od testu dla prób niezależnych, bierze pod uwagę i ocenia te same grupy osób. Obserwacja musi odbyć się dwa razy, a badane próby są powiązane ze sobą. Próba ta zestawia ze sobą wynik i pierwszego i drugiego pomiaru dokonywanego na jednej zmiennej. Zmienna jest badana w odniesieniu do innych warunków, jakie zachodzą, jednakże z uwzględnieniem tej samej grupy badanych. Próba zależna wymaga zaistnienia określonych czynników: zmiennej zależnej w pomiarze ilościowym; rozkładu zmiennej, który jest normalny; zastosowania identycznej skali pomiaru przy obydwu pomiarach, normalność rozkładu różnic zmiennych (W. Malska 2015, s. 326):
  • dla jednej próby – test ten pozwala wyciągnąć wnioski z zestawienia: średniego wyniki dokonanego na jednej grupie osób poddanych w badaniu, z odchyleniem standardowym wynikającym z tego samego badania na tej samej, jednej grupie badanych. Obydwa te pomiary koreluje się z założoną na potrzeby tego badania wartością. Wartość ta może być przyjęta hipotetycznie lub można wynika z innych badań. Test jednej próby używany jest, kiedy dokonywany jest pomiar zmiennej o ile znajduje się ona na skali ilościowej i ma rozkład normalny (W. Malska 2015, s. 326): Parser nie mógł rozpoznać (błąd składni): {\displaystyle T=\frac{\bar{X_1}-μ}{Sx_1}}

Rozkład t-Studenta

Rozkład t-Studenta zwany również rozkładem t to model teoretyczny wykorzystywany do przybliżenia momentu pierwszego rzędu populacji o rozkładzie normalnym, przy niewielkiej wielkości próby oraz nieznanym odchyleniem standardowym. Jest to rozkład prawdopodobieństwa, który podaje wartość małej próby z populacji, posiadającej rozkład normalny i dla której brak jest informacji o odchyleniu standardowym. W przeciwieństwie do rozkładu normalnego rozkład t zależy jedynie od stopni swobody (M. Sobczyk 2007, s. 134-136).

Rozkład t-Studenta jest stosowany w statystyce i metrologii. Opierają się na dwóch podstawowych twierdzeniach:

  1. zmienne losowe Parser nie mógł rozpoznać (błąd składni): {\displaystyle X_1,X_2,…X_n} mają taki sam rozkład prawdopodobieństwa, który jest rozkładem normalnym o średniej i wariancji Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle σ^2} . Wówczas zmienna ma rozkład Studenta o stopniach swobody.
  2. dwie próby o liczebności oraz , wartościach średnich oraz i wariancja określona z próby oraz wylosowane z populacji o jednakowym rozkładzie normalnym, powodują, że zmienna ma rozkład Studenta o

Rozkład ten jest wykorzystywany w testach parametrycznych, estymacji przedziałowej, wartości średnich i wariancji oraz testach istotności, gdy chodzi o próby z niewielką liczebnością, czyli gdy . W przypadku metrologii rozkładu Studenta używa się do estymacji odchylenia standardowego. Jeśli chodzi o duże próby, gdzie rozkład t-Studenta jest tożsamy z rozkładem normalnym, a dla mniejszych prób estymator odchylenia standardowego powinien zostać pomnożony przez wartość krytyczną rozkładu, gdzie liczba stopni swobody wynosi , a poziom istotności przyjmuje wartość Parser nie mógł rozpoznać (błąd składni): {\displaystyle α} . (M. Sobczyk 2007, s. 134-136).

Przykłady zastosowania testu t-Studenta

Test t-Studenta można wykorzystać w badaniu różnych zjawisk w zależności od posiadanych danych. Poniżej zostały przedstawione przykłady problemów badawczych w odniesieniu do rodzajów testów t-Studenta:

  1. dla jednej próby

Czy wpływy ze sztabów WOŚP w woj. Lubelskim różnią się od średniej z ubiegłego roku?

Czy inteligencja studentów z UEK różni się od średniej w populacji?

  1. dla prób skorelowanych (zależnych)

Czy słuchanie muzyki podczas rozwiązywania zadań wydłuża czas znalezienia rozwiązania?

Czy istnieje różnica między wysokością zarobków na początku zatrudnienia a wysokością zarobków po 5 latach pracy?

  1. dla prób nieskorelowanych (niezależnych)

Czy kobiety i mężczyźni różnią się liczbą podejść do egzaminy na prawo jazdy?

Czy mieszkańcy miast i wsi różnią się od siebie wysokością zarobków?

Bibliografia

Autor: Anna Tas