Test t Studenta: Różnice pomiędzy wersjami

Z Encyklopedia Zarządzania
Nie podano opisu zmian
Nie podano opisu zmian
Linia 12: Linia 12:
Istnieją trzy rodzaje testu t-Studenta (W. Malska 2015, s. 326):
Istnieją trzy rodzaje testu t-Studenta (W. Malska 2015, s. 326):
* '''dla prób niezależnych''' – ocenia różnice między niezależnymi grupami np. między grupą kontrolną a eksperymentalną, kobietami a mężczyznami czy grupą starszych i młodszych. Aby wyniki wyszły prawidłowe należy mieć na uwadze takie czynniki jak: pomiar ilościowy zmiennej zależnej, zmienna niezależna powinna być dychotomiczna, rozkład w grupach powinien być normalny, wariancje oraz liczebność grup jest zbliżona. Porównanie grupy badanych następuje z wykorzystaniem testu zgodności chi-kwadrat (test Pearsona) (W. Malska 2015, s. 326).   
* '''dla prób niezależnych''' – ocenia różnice między niezależnymi grupami np. między grupą kontrolną a eksperymentalną, kobietami a mężczyznami czy grupą starszych i młodszych. Aby wyniki wyszły prawidłowe należy mieć na uwadze takie czynniki jak: pomiar ilościowy zmiennej zależnej, zmienna niezależna powinna być dychotomiczna, rozkład w grupach powinien być normalny, wariancje oraz liczebność grup jest zbliżona. Porównanie grupy badanych następuje z wykorzystaniem testu zgodności chi-kwadrat (test Pearsona) (W. Malska 2015, s. 326).   
* '''dla prób zależnych''' – Jest to klasyczny przykład testu wykonywanego przed i po zaistniałej zmianie. W odróżnieniu od testu dla prób niezależnych, bierze pod uwagę i ocenia te same grupy osób. Obserwacja musi odbyć się dwa razy, a badane próby są powiązane ze sobą. Próba ta zestawia ze sobą wynik i pierwszego i drugiego pomiaru dokonywanego na jednej zmiennej. Zmienna jest badana w odniesieniu do innych warunków, jakie zachodzą, jednakże z uwzględnieniem tej samej grupy badanych.
* '''dla prób zależnych''' – Jest to klasyczny przykład testu wykonywanego przed i po zaistniałej zmianie. W odróżnieniu od testu dla prób niezależnych, bierze pod uwagę i ocenia te same grupy osób. Obserwacja musi odbyć się dwa razy, a badane próby są powiązane ze sobą. Próba ta zestawia ze sobą wynik i pierwszego i drugiego pomiaru dokonywanego na jednej zmiennej. Zmienna jest badana w odniesieniu do innych warunków, jakie zachodzą, jednakże z uwzględnieniem tej samej grupy badanych. Próba zależna wymaga zaistnienia określonych czynników: zmiennej zależnej w pomiarze ilościowym; rozkładu zmiennej, który jest normalny; zastosowania identycznej skali pomiaru przy obydwu pomiarach, normalność rozkładu różnic zmiennych (W. Malska 2015, s. 326).   
Próba zależna wymaga zaistnienia określonych czynników: zmiennej zależnej w pomiarze ilościowym; rozkładu zmiennej, który jest normalny; zastosowania identycznej skali pomiaru przy obydwu pomiarach, normalność rozkładu różnic zmiennych (W. Malska 2015, s. 326).   
* '''dla jednej próby''' – test ten pozwala wyciągnąć wnioski z zestawienia: średniego wyniki dokonanego na jednej grupie osób poddanych w badaniu, z odchyleniem standardowym wynikającym z tego samego badania na tej samej, jednej grupie badanych (W. Malska 2015, s. 326).
* '''dla jednej próby''' – test ten pozwala wyciągnąć wnioski z zestawienia: średniego wyniki dokonanego na jednej grupie osób poddanych w badaniu, z odchyleniem standardowym wynikającym z tego samego badania na tej samej, jednej grupie badanych (W. Malska 2015, s. 326).
Obydwa te pomiary koreluje się z założoną na potrzeby tego badania wartością. Wartość ta może być przyjęta hipotetycznie lub można wynika z innych badań. Test jednej próby używany jest, kiedy dokonywany jest pomiar zmiennej o ile znajduje się ona na skali ilościowej i ma rozkład normalny (W. Malska 2015, s. 326).   
Obydwa te pomiary koreluje się z założoną na potrzeby tego badania wartością. Wartość ta może być przyjęta hipotetycznie lub można wynika z innych badań. Test jednej próby używany jest, kiedy dokonywany jest pomiar zmiennej o ile znajduje się ona na skali ilościowej i ma rozkład normalny (W. Malska 2015, s. 326).   


==Rozkład t-Studenta==
==Rozkład t-Studenta==
Rozkład t-Studenta zwany również rozkładem t to model teoretyczny wykorzystywany do przybliżenia momentu pierwszego rzędu populacji o rozkładzie normalnym, przy niewielkiej wielkości próby oraz nieznanym odchyleniem standardowym. Jest to rozkład prawdopodobieństwa, który podaje wartość małej próby z populacji, posiadającej rozkład normalny i dla której brak jest informacji o odchyleniu standardowym (M. Sobczyk 2007, s. 134-136).  
'''Rozkład t-Studenta''' zwany również rozkładem t to model teoretyczny wykorzystywany do przybliżenia momentu pierwszego rzędu populacji o rozkładzie normalnym, przy niewielkiej wielkości próby oraz nieznanym odchyleniem standardowym. Jest to rozkład prawdopodobieństwa, który podaje wartość małej próby z populacji, posiadającej rozkład normalny i dla której brak jest informacji o odchyleniu standardowym (M. Sobczyk 2007, s. 134-136).  
 
W przeciwieństwie do rozkładu normalnego rozkład t zależy jedynie od stopni swobody (M. Sobczyk 2007, s. 134-136).
W przeciwieństwie do rozkładu normalnego rozkład t zależy jedynie od stopni swobody (M. Sobczyk 2007, s. 134-136).
Jest on używany gdy (M. Sobczyk 2007, s. 134-136).:
 
*należy oszacować średnią populacji o rozkładzie normalnym z małej próby
Jest on używany gdy (M. Sobczyk 2007, s. 134-136):
*próba jest mniejsza niż 30.
* należy oszacować średnią populacji o rozkładzie normalnym z małej próby
* próba jest mniejsza niż 30.


==Bibliografia==
==Bibliografia==

Wersja z 17:13, 27 kwi 2022

Test t- Studenta jest wykorzystywany w celu porównania grup, dla których mamy wyniki, czyli chcemy stwierdzić czy wyniki w jednej grupie są większe bądź mniejsze niż w drugiej grupie. Testu t- Studenta nie należy wykonywać dla więcej niż dwóch grup. Odpowiada on na pytanie czy średnie wartości badanych zmiennych w dwóch grupach różnią się od siebie statystycznie istotnie (M. Sobczyk 2007, s. 134-136).

Założenia testów t-Studenta

Założenie testów t-Studenta jest następujące (M. Sobczyk 2007, s. 134-136):

  1. rozkład wyników zmiennej zależnej w badanych grupach jest zbliżony do rozkładu normalnego,
  2. porównywane grupy są podobne pod kątem ilości badanych osób,
  3. homogeniczność wariancji, tzn. wariancje w grupach badanych są do siebie podobne
  4. zmienna zależna powinna być mierzona na skali ilościowej

Test t- Studenta jest testem parametrycznym, czyli opiera się na obliczaniu wartości średniej i odchylenia standardowego. Posiadając zmienne mierzone w skali porządkowej czy nominalnej obliczenie wartości za pomocą t-Studenta nie jest możliwe. W tym przypadku powinien zostać zastosowany jego odpowiedni dla testów nieparametrycznych, a mianowicie test U Manna-Whitneya (M. Sobczyk 2007, s. 134-136).

Rodzaje testów

Istnieją trzy rodzaje testu t-Studenta (W. Malska 2015, s. 326):

  • dla prób niezależnych – ocenia różnice między niezależnymi grupami np. między grupą kontrolną a eksperymentalną, kobietami a mężczyznami czy grupą starszych i młodszych. Aby wyniki wyszły prawidłowe należy mieć na uwadze takie czynniki jak: pomiar ilościowy zmiennej zależnej, zmienna niezależna powinna być dychotomiczna, rozkład w grupach powinien być normalny, wariancje oraz liczebność grup jest zbliżona. Porównanie grupy badanych następuje z wykorzystaniem testu zgodności chi-kwadrat (test Pearsona) (W. Malska 2015, s. 326).
  • dla prób zależnych – Jest to klasyczny przykład testu wykonywanego przed i po zaistniałej zmianie. W odróżnieniu od testu dla prób niezależnych, bierze pod uwagę i ocenia te same grupy osób. Obserwacja musi odbyć się dwa razy, a badane próby są powiązane ze sobą. Próba ta zestawia ze sobą wynik i pierwszego i drugiego pomiaru dokonywanego na jednej zmiennej. Zmienna jest badana w odniesieniu do innych warunków, jakie zachodzą, jednakże z uwzględnieniem tej samej grupy badanych. Próba zależna wymaga zaistnienia określonych czynników: zmiennej zależnej w pomiarze ilościowym; rozkładu zmiennej, który jest normalny; zastosowania identycznej skali pomiaru przy obydwu pomiarach, normalność rozkładu różnic zmiennych (W. Malska 2015, s. 326).
  • dla jednej próby – test ten pozwala wyciągnąć wnioski z zestawienia: średniego wyniki dokonanego na jednej grupie osób poddanych w badaniu, z odchyleniem standardowym wynikającym z tego samego badania na tej samej, jednej grupie badanych (W. Malska 2015, s. 326).

Obydwa te pomiary koreluje się z założoną na potrzeby tego badania wartością. Wartość ta może być przyjęta hipotetycznie lub można wynika z innych badań. Test jednej próby używany jest, kiedy dokonywany jest pomiar zmiennej o ile znajduje się ona na skali ilościowej i ma rozkład normalny (W. Malska 2015, s. 326).

Rozkład t-Studenta

Rozkład t-Studenta zwany również rozkładem t to model teoretyczny wykorzystywany do przybliżenia momentu pierwszego rzędu populacji o rozkładzie normalnym, przy niewielkiej wielkości próby oraz nieznanym odchyleniem standardowym. Jest to rozkład prawdopodobieństwa, który podaje wartość małej próby z populacji, posiadającej rozkład normalny i dla której brak jest informacji o odchyleniu standardowym (M. Sobczyk 2007, s. 134-136).

W przeciwieństwie do rozkładu normalnego rozkład t zależy jedynie od stopni swobody (M. Sobczyk 2007, s. 134-136).

Jest on używany gdy (M. Sobczyk 2007, s. 134-136):

  • należy oszacować średnią populacji o rozkładzie normalnym z małej próby
  • próba jest mniejsza niż 30.

Bibliografia

Bobowski Z. (2004), Wybrane metody statystyki opisowej w wnioskowania statystycznego, Wydawnictwo WWSZiP, s. 137-157. Gardoń A. (2011), Rozkład statystyki T-Studenta przy danej wariancji z próby o rozkładzie normalnym, Didactics of Mathematics, 2011, Nr 8 (12), s. 17-30. Kurkiewicz J. (2005), Podstawy statystyki, Oficyna Wydawnicza AFM, Kraków, s 190-203. Lipińska K. (2010), Rachunek prawdopodobieństwa i statystyka, Ośrodek Kształcenia na Odległość Politechniki Warszawskiej OKNO, Warszawa, s. 69-72. Magiera R. (2018), Modele i metody statystyki matematycznej, Oficyna Wydawnicza GiS, Wrocław. Malska W. (2015), Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym, „Edukacja – Technika – Informatyka” nr 3(13), s. 326. Sobczyk M. (2007), Statystyka, Wydawnictwo Naukowe PWN, Warszawa, s. 146-150.