Testy statystyczne: Różnice pomiędzy wersjami
Nie podano opisu zmian |
|||
Linia 22: | Linia 22: | ||
==Podział testów statystycznych== | ==Podział testów statystycznych== | ||
Testy parametryczne dotyczą parametrów statystycznych populacji. Ze względu na zastosowanie testy te dzielą się na dwie grupy: | Testy parametryczne dotyczą parametrów statystycznych populacji. Ze względu na zastosowanie testy te dzielą się na dwie grupy: | ||
#służące do weryfikacji populacji jednowymiarowych: | # służące do weryfikacji populacji jednowymiarowych: | ||
*testy dla średniej, | *testy dla średniej, | ||
*testy dla proporcji, | *testy dla proporcji, | ||
*testy dla wariancji | *testy dla wariancji | ||
#służące do porównania własności dwóch populacji: | # służące do porównania własności dwóch populacji: | ||
*testy dla dwóch średnich, | *testy dla dwóch średnich, | ||
*testy dla dwóch proporcji, | *testy dla dwóch proporcji, | ||
Linia 32: | Linia 32: | ||
Testy nieparametryczne dotyczą rozkładu zmiennej lub losowości próby. Tego rodzaju testy również można podzielić ze względu na zastosowanie: | Testy nieparametryczne dotyczą rozkładu zmiennej lub losowości próby. Tego rodzaju testy również można podzielić ze względu na zastosowanie: | ||
#weryfikujące własności populacji jednowymiarowych: | # weryfikujące własności populacji jednowymiarowych: | ||
*test zgodności chi-kwadrat, | *test zgodności chi-kwadrat, | ||
*test zgodności Kołmogorowa, | *test zgodności Kołmogorowa, | ||
*test normalności Shapiro-Wilka, | *test normalności Shapiro-Wilka, | ||
*test serii. | *test serii. | ||
#porównujące własność dwóch populacji | # porównujące własność dwóch populacji | ||
*test Kołmogorowa – Smirnowa, | *test Kołmogorowa – Smirnowa, | ||
*test jednorodności chi-kwadrat, | *test jednorodności chi-kwadrat, |
Wersja z 14:31, 14 kwi 2022
Test statystyczny to reguła postępowania, która przyporządkowuje wynikom próby losowej decyzję przyjęcia lub odrzucenia hipotezy zerowej. Wersja formalna testu statystycznego inaczej niezrandomizowanego wygląda następująco: Testem hipotezy H0 przeciw alternatywie H1 nazywamy statystykę Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle &delta : X → {0,1}} Gdzie X jest przestrzenią realizacji, natomiast wartość 1 interpretuje się jako decyzję o odrzuceniu hipotezy H0, zaś 0 oznacza, że nie należy odrzucać H0.
Hipoteza i poziom istotności
Hipoteza statystyczna to przypuszczenie odnośnie rozkładu populacji generalnej. Jej prawdziwość ocenia się na podstawie wyników próby losowej. Hipotezę, którą należy zweryfikować określa się mianem hipotezy zerowej H0, natomiast hipotezę niepodlegającą weryfikacji jako hipotezę alternatywną H1. Hipoteza zerowa może być prawdziwa lub fałszywa. Wówczas rozpatruje się następujące przypadki: H0 jest prawdziwa – test potwierdził H0 lub test obalił hipotezę zerową i w zamian przyjęto hipotezę alternatywną – określa się to jako błąd I rodzaju. H0 jest fałszywa – test potwierdził H0 (błąd drugiego rodzaju) lub test obalił hipotezę zerową, na miejsce której przyjęto hipotezę alternatywną. O odrzuceniu H0 lub stwierdzeniu, że nie ma podstaw do jej odrzucenia decyduje się na podstawie testów istotności. Wykorzystuje się do tego p-value, czyli poziom istaotności, który jest najmniejszym poziomem, przy którym dla danej wartości statystyki testowej odrzucona zostałaby H0. Zwykle p-value wynosi 0,05. W praktyce testy istotności są stosowane najczęściej. Ich przebieg oparty jest na następującym schemacie:
- Ustalenie hipotezy – określenie hipotezy zerowej oraz postawienie hipotezy przeciwnej czyli hipotezy alternatywnej.
- Dobranie statystyki testowej – „statystyka testowa to zmienna losowa, której wartość oblicza się na podstawie danych z próby. Zależnie od uzyskanych wartości podejmuje się decyzje o odrzuceniu lub nieodrzuceniu hipotezy zerowej na rzecz hipotezy alternatywnej.
- Ustalenie zbioru krytycznego – „ Zbiór krytyczny to taki podzbiór wartości, jakie może przyjmować statystyka testowa, że prawdopodobieństwo, iż wyliczona wartość statystyki testowej na podstawie pobranej próby należy do tego zbioru, jest równe α.”
- Podjęcie decyzji – jeśli statystyka dla danych z próby ma wartość należącą do zbioru krytycznego wówczas należy odrzucić H0. Natomiast jeśli statystyka testowa nie należy do zbioru to nie ma podstaw do odrzucenia H0.
Podział testów statystycznych
Testy parametryczne dotyczą parametrów statystycznych populacji. Ze względu na zastosowanie testy te dzielą się na dwie grupy:
- służące do weryfikacji populacji jednowymiarowych:
- testy dla średniej,
- testy dla proporcji,
- testy dla wariancji
- służące do porównania własności dwóch populacji:
- testy dla dwóch średnich,
- testy dla dwóch proporcji,
- testy dla dwóch wariancji.
Testy nieparametryczne dotyczą rozkładu zmiennej lub losowości próby. Tego rodzaju testy również można podzielić ze względu na zastosowanie:
- weryfikujące własności populacji jednowymiarowych:
- test zgodności chi-kwadrat,
- test zgodności Kołmogorowa,
- test normalności Shapiro-Wilka,
- test serii.
- porównujące własność dwóch populacji
- test Kołmogorowa – Smirnowa,
- test jednorodności chi-kwadrat,
- test mediany,
- test serii,
- test znaków.