Kombinatoryka: Różnice pomiędzy wersjami
Nie podano opisu zmian |
Nie podano opisu zmian |
||
Linia 2: | Linia 2: | ||
==Metody obliczania liczby wyników zdarzenia losowego== | ==Metody obliczania liczby wyników zdarzenia losowego== | ||
Liczbę możliwych wyników doświadczenia losowego można obliczać różnymi sposobami, między innymi<ref> | Liczbę możliwych wyników doświadczenia losowego można obliczać różnymi sposobami, między innymi<ref>Nowoświat K.(2014), ''Matematyka Europejczyka''</ref>: | ||
* poprzez wypisanie wszystkich możliwości | * poprzez wypisanie wszystkich możliwości | ||
* przy pomocy tabeli | * przy pomocy tabeli | ||
Linia 10: | Linia 10: | ||
==Zasady stosowane w kombinatoryce == | ==Zasady stosowane w kombinatoryce == | ||
'''Podstawowa zasada kombinatoryki''' | '''Podstawowa zasada kombinatoryki''' | ||
Podejmując kilka niezależnych decyzji częściowych, dotyczących jednego całościowego wyboru mnożymy liczby decyzji, jeśli jednak dokonujemy wyborów wykluczających się, to liczby wyborów należy dodać<ref> | Podejmując kilka niezależnych decyzji częściowych, dotyczących jednego całościowego wyboru mnożymy liczby decyzji, jeśli jednak dokonujemy wyborów wykluczających się, to liczby wyborów należy dodać<ref>Nowoświat K.(2014), ''Matematyka Europejczyka''</ref>. | ||
'''Reguła dodawania''' | '''Reguła dodawania''' | ||
Jeśli mamy wybrać pewien element z dwóch zbiorów A i B, zbiór A ma m elementów, a zbiór B ma n elementów, wyboru można dokonać na dokładnie ''m+n'' sposobów, przy czym zbiory te nie mają wspólnych elementów<ref> | Jeśli mamy wybrać pewien element z dwóch zbiorów A i B, zbiór A ma m elementów, a zbiór B ma n elementów, wyboru można dokonać na dokładnie ''m+n'' sposobów, przy czym zbiory te nie mają wspólnych elementów - wykluczają się<ref>Nowoświat K.(2014), ''Matematyka Europejczyka''</ref>. | ||
'''Reguła mnożenia''' | '''Reguła mnożenia''' | ||
Jeśli pierwsza czynność może zakończyć się na jeden z m sposobów, a druga na jeden z n sposobów to liczba wszystkich możliwych wyników doświadczenia, które polega na wykonaniu po kolei dwóch czynności jest równa ''m⋅n''<ref> | Jeśli pierwsza czynność może zakończyć się na jeden z m sposobów, a druga na jeden z n sposobów to liczba wszystkich możliwych wyników doświadczenia, które polega na wykonaniu po kolei dwóch czynności jest równa ''m⋅n''<ref>Nowoświat K.(2014), ''Matematyka Europejczyka''</ref>. | ||
W ten sam sposób postępujemy w przypadku doświadczenie, które polega na wykonaniu po kolei trzech czynności, wtedy jednak liczba wszystkich możliwych wyników doświadczenia jest równa ''kmn''<ref> | W ten sam sposób postępujemy w przypadku doświadczenie, które polega na wykonaniu po kolei trzech czynności, wtedy jednak liczba wszystkich możliwych wyników doświadczenia jest równa ''kmn''<ref>Nowoświat K.(2014), ''Matematyka Europejczyka''</ref>. | ||
==Elementy kombinatoryki== | ==Elementy kombinatoryki== | ||
Linia 29: | Linia 29: | ||
Według CKE '''wariacje z powtórzeniami''' to:,, Liczba sposobów, na które z n różnych elementów można utworzyć ciąg, składający się z ''k'' niekoniecznie różnych wyrazów, jest równa ''n<sup>k</sup>''<ref>''Wybrane wzory matematyczne'' (2015)</ref>." | Według CKE '''wariacje z powtórzeniami''' to:,, Liczba sposobów, na które z n różnych elementów można utworzyć ciąg, składający się z ''k'' niekoniecznie różnych wyrazów, jest równa ''n<sup>k</sup>''<ref>''Wybrane wzory matematyczne'' (2015)</ref>." | ||
Natomiast '''wariacją bez powtórzeń''' jest liczbą sposobów, na które można utworzyć ciąg z ''n'' różnych elementów, składający się z ''k'' różnych wyrazów, przy czym 1≤k≤n, jest równa<ref>''Wybrane wzory matematyczne'' (2015)</ref>: ''n!/(n-k)!'' | Natomiast '''wariacją bez powtórzeń''' jest liczbą sposobów, na które można utworzyć ciąg z ''n'' różnych elementów, składający się z ''k'' różnych wyrazów, przy czym 1≤k≤n, jest równa<ref>''Wybrane wzory matematyczne'' (2015)</ref>: ''n!/(n-k)!'' | ||
'''Permutacją''' nazywamy liczbę sposobów, na które ''n(n≥1)'' różnych elementów może zostać ustawiona w ciąg. Jest | '''Permutacją''' nazywamy liczbę sposobów, na które ''n(n≥1)'' różnych elementów może zostać ustawiona w ciąg. Jest wyrażona za pomocą wzoru ''n!''<ref>''Wybrane wzory matematyczne'' (2015), Warszawa </ref>. | ||
'''Kombinacją''' można nazwać liczbę sposobów, na które spośród ''n'' różnych elementów można wybrać ‘’k’’ elementów, przy czym 0≤''k''≤''n'', zapisujemy ją za pomocą Symbolu Newtona<ref>''Wybrane wzory matematyczne'' (2015)</ref>. | '''Kombinacją''' można nazwać liczbę sposobów, na które spośród ''n'' różnych elementów można wybrać ‘’k’’ elementów, przy czym 0≤''k''≤''n'', zapisujemy ją za pomocą Symbolu Newtona<ref>''Wybrane wzory matematyczne'' (2015)</ref>. | ||
==Historia kombinatoryki== | ==Historia kombinatoryki== | ||
Dwa podstawowe zagadnienia '''kombinatoryki''', jakimi są liczba prenumeracji i kombinacji mają długą historię. Rozważane były już tysiąc lat temu w Indiach, Chinach i krajach Islamu. Przez dłuższy czas kombinatoryka była częścią prozodii, logiki, a nawet kwestii związanych z codziennym życiem. Kombinatoryka zaczęła nabierać bardziej naukowego charakteru razem z rozwojem prawdopodobieństwa. Po raz pierwszy termin kombinatoryka pojawił się w publikacji ,, Dissertatio de Arte Combinatoria” autorstwa Leibzniz’a w 1666 roku. Dopiero w połowie XX wieku kombinatoryka staje się jednym z głównych nurtów matematyki<ref>Zakrzewski M. (2018), | Dwa podstawowe zagadnienia '''kombinatoryki''', jakimi są liczba prenumeracji i kombinacji mają długą historię. Rozważane były już tysiąc lat temu w Indiach, Chinach i krajach Islamu. Przez dłuższy czas kombinatoryka była częścią prozodii, logiki, a nawet kwestii związanych z codziennym życiem. Kombinatoryka zaczęła nabierać bardziej naukowego charakteru razem z rozwojem prawdopodobieństwa. Po raz pierwszy termin kombinatoryka pojawił się w publikacji ,, Dissertatio de Arte Combinatoria” autorstwa Leibzniz’a w 1666 roku. Dopiero w połowie XX wieku kombinatoryka staje się jednym z głównych nurtów matematyki<ref>Zakrzewski M. (2018),''Markowe Wykłady z Matematyki''], s.3</ref>. | ||
==Przypisy== | ==Przypisy== | ||
Linia 43: | Linia 42: | ||
: | : | ||
* Janiec E. (2006), ''Nowa Encyklopedia Podręczna PWN'', „Wydawnictwo Naukowe PWN”, s.441 | * Janiec E. (2006), ''Nowa Encyklopedia Podręczna PWN'', „Wydawnictwo Naukowe PWN”, s.441 | ||
* Nowoświat K.(2014), [http://pdf.helion.pl/mepod3/mepod3.pdf ''Matematyka Europejczyka''],„Helion“ | |||
* [https://docplayer.pl/123656567-Rachunek-prawdopodobienstwa-i-kombinatoryka.html ''Rachunek prawdopodobieństwa i kombinatoryka''] (2021) | * [https://docplayer.pl/123656567-Rachunek-prawdopodobienstwa-i-kombinatoryka.html ''Rachunek prawdopodobieństwa i kombinatoryka''] (2021) | ||
* Rutkowski J. (2021), [https://mleczko.students.wmi.amu.edu.pl/wp-content/uploads/2013/10/04-RachPrawdopod_14_15-student.pdf ''Kombinatoryka i rachunek prawdopodobieństwa''] | * Rutkowski J. (2021), [https://mleczko.students.wmi.amu.edu.pl/wp-content/uploads/2013/10/04-RachPrawdopod_14_15-student.pdf ''Kombinatoryka i rachunek prawdopodobieństwa''] |
Wersja z 21:32, 18 maj 2021
Dział matematyczny, który zajmuje się wyznaczaniem liczby elementów zbiorów skończonych, które są tworzone w określony sposób, np. zbiór kombinacji, permutacji, wariacji. Zajmuje się zliczaniem sposobów zajścia zdarzenia losowego[1].
Metody obliczania liczby wyników zdarzenia losowego
Liczbę możliwych wyników doświadczenia losowego można obliczać różnymi sposobami, między innymi[2]:
- poprzez wypisanie wszystkich możliwości
- przy pomocy tabeli
- za pomocą grafu ( drzewka)
- stosując reguły dodawania i mnożenia
Zasady stosowane w kombinatoryce
Podstawowa zasada kombinatoryki Podejmując kilka niezależnych decyzji częściowych, dotyczących jednego całościowego wyboru mnożymy liczby decyzji, jeśli jednak dokonujemy wyborów wykluczających się, to liczby wyborów należy dodać[3].
Reguła dodawania Jeśli mamy wybrać pewien element z dwóch zbiorów A i B, zbiór A ma m elementów, a zbiór B ma n elementów, wyboru można dokonać na dokładnie m+n sposobów, przy czym zbiory te nie mają wspólnych elementów - wykluczają się[4].
Reguła mnożenia Jeśli pierwsza czynność może zakończyć się na jeden z m sposobów, a druga na jeden z n sposobów to liczba wszystkich możliwych wyników doświadczenia, które polega na wykonaniu po kolei dwóch czynności jest równa m⋅n[5]. W ten sam sposób postępujemy w przypadku doświadczenie, które polega na wykonaniu po kolei trzech czynności, wtedy jednak liczba wszystkich możliwych wyników doświadczenia jest równa kmn[6].
Elementy kombinatoryki
Do elementów kombinatoryki zaliczamy[7]:
- permutacje
- kombinacje
- wariacje bez powtórzeń
- wariacje z powtórzeniami
Wariacje, Permutacje, Kombinacje
Według CKE wariacje z powtórzeniami to:,, Liczba sposobów, na które z n różnych elementów można utworzyć ciąg, składający się z k niekoniecznie różnych wyrazów, jest równa nk[8]." Natomiast wariacją bez powtórzeń jest liczbą sposobów, na które można utworzyć ciąg z n różnych elementów, składający się z k różnych wyrazów, przy czym 1≤k≤n, jest równa[9]: n!/(n-k)! Permutacją nazywamy liczbę sposobów, na które n(n≥1) różnych elementów może zostać ustawiona w ciąg. Jest wyrażona za pomocą wzoru n![10]. Kombinacją można nazwać liczbę sposobów, na które spośród n różnych elementów można wybrać ‘’k’’ elementów, przy czym 0≤k≤n, zapisujemy ją za pomocą Symbolu Newtona[11].
Historia kombinatoryki
Dwa podstawowe zagadnienia kombinatoryki, jakimi są liczba prenumeracji i kombinacji mają długą historię. Rozważane były już tysiąc lat temu w Indiach, Chinach i krajach Islamu. Przez dłuższy czas kombinatoryka była częścią prozodii, logiki, a nawet kwestii związanych z codziennym życiem. Kombinatoryka zaczęła nabierać bardziej naukowego charakteru razem z rozwojem prawdopodobieństwa. Po raz pierwszy termin kombinatoryka pojawił się w publikacji ,, Dissertatio de Arte Combinatoria” autorstwa Leibzniz’a w 1666 roku. Dopiero w połowie XX wieku kombinatoryka staje się jednym z głównych nurtów matematyki[12].
Przypisy
- ↑ Janiec E. (2006), Nowa Encyklopedia Podręczna PWN, s.441
- ↑ Nowoświat K.(2014), Matematyka Europejczyka
- ↑ Nowoświat K.(2014), Matematyka Europejczyka
- ↑ Nowoświat K.(2014), Matematyka Europejczyka
- ↑ Nowoświat K.(2014), Matematyka Europejczyka
- ↑ Nowoświat K.(2014), Matematyka Europejczyka
- ↑ Rutkowski J. (2021), Kombinatoryka i rachunek prawdopodobieństwa
- ↑ Wybrane wzory matematyczne (2015)
- ↑ Wybrane wzory matematyczne (2015)
- ↑ Wybrane wzory matematyczne (2015), Warszawa
- ↑ Wybrane wzory matematyczne (2015)
- ↑ Zakrzewski M. (2018),Markowe Wykłady z Matematyki], s.3
Bibliografia
- Janiec E. (2006), Nowa Encyklopedia Podręczna PWN, „Wydawnictwo Naukowe PWN”, s.441
- Nowoświat K.(2014), Matematyka Europejczyka,„Helion“
- Rachunek prawdopodobieństwa i kombinatoryka (2021)
- Rutkowski J. (2021), Kombinatoryka i rachunek prawdopodobieństwa
- Wybrane wzory matematyczne (2015), Warszawa
- Zakrzewski M. (2018),Markowe Wykłady z Matematyki, „GiS”, Wrocław, s.3
Autor: Aleksandra Potejko