Test t Studenta: Różnice pomiędzy wersjami

Z Encyklopedia Zarządzania
Linia 45: Linia 45:
* Kurkiewicz J. (2005), ''Podstawy statystyki'', Oficyna Wydawnicza AFM, Kraków, s 190-203.
* Kurkiewicz J. (2005), ''Podstawy statystyki'', Oficyna Wydawnicza AFM, Kraków, s 190-203.
* Lipińska K. (2010), ''Rachunek prawdopodobieństwa i statystyka'', Ośrodek Kształcenia na Odległość Politechniki Warszawskiej OKNO, Warszawa, s. 69-72.  
* Lipińska K. (2010), ''Rachunek prawdopodobieństwa i statystyka'', Ośrodek Kształcenia na Odległość Politechniki Warszawskiej OKNO, Warszawa, s. 69-72.  
* Magiera R. (2018), ''[http://www.gis.wroc.pl/pdf/mimsm2_www.pdf Modele i metody statystyki matematycznej]'', Oficyna Wydawnicza GiS, Wrocław.
* Magiera R. (2018), ''[http://www.gis.wroc.pl/pdf/mimsm2_www.pdf Modele i metody statystyki matematycznej]'', Oficyna Wydawnicza GiS, Wrocław, s. 226.
* Malska W. (2015), ''[http://webcache.googleusercontent.com/search?q=cache:pXeugSuo-0IJ:cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.desklight-5d9fba13-767c-48c1-9e27-702d30775f48/c/047__ETI_nr_Vol_6_3_Wykorzystanie_testu.pdf+&cd=10&hl=pl&ct=clnk&gl=pl Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym]'', „Edukacja – Technika – Informatyka” nr 3(13), s. 326.
* Malska W. (2015), ''[http://webcache.googleusercontent.com/search?q=cache:pXeugSuo-0IJ:cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.desklight-5d9fba13-767c-48c1-9e27-702d30775f48/c/047__ETI_nr_Vol_6_3_Wykorzystanie_testu.pdf+&cd=10&hl=pl&ct=clnk&gl=pl Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym]'', „Edukacja – Technika – Informatyka” nr 3(13), s. 326.
* Sobczyk M. (2007), ''Statystyka'', Wydawnictwo Naukowe PWN, Warszawa, s. 146-150.
* Sobczyk M. (2007), ''Statystyka'', Wydawnictwo Naukowe PWN, Warszawa, s. 146-150.

Wersja z 19:28, 28 kwi 2022

Test t- Studenta jest wykorzystywany w celu porównania grup, dla których mamy wyniki, czyli chcemy stwierdzić czy wyniki w jednej grupie są większe bądź mniejsze niż w drugiej grupie. Testu t- Studenta nie należy wykonywać dla więcej niż dwóch grup. Odpowiada on na pytanie czy średnie wartości badanych zmiennych w dwóch grupach różnią się od siebie statystycznie istotnie (M. Sobczyk 2007, s. 134-136).

Założenia testów t-Studenta

Założenie testów t-Studenta jest następujące (M. Sobczyk 2007, s. 134-136):

  1. rozkład wyników zmiennej zależnej w badanych grupach jest zbliżony do rozkładu normalnego,
  2. porównywane grupy są podobne pod kątem ilości badanych osób,
  3. homogeniczność wariancji, tzn. wariancje w grupach badanych są do siebie podobne
  4. zmienna zależna powinna być mierzona na skali ilościowej

Test t- Studenta jest testem parametrycznym, czyli opiera się na obliczaniu wartości średniej i odchylenia standardowego. Posiadając zmienne mierzone w skali porządkowej czy nominalnej obliczenie wartości za pomocą t-Studenta nie jest możliwe. W tym przypadku powinien zostać zastosowany jego odpowiedni dla testów nieparametrycznych, a mianowicie test U Manna-Whitneya (M. Sobczyk 2007, s. 134-136).

Rodzaje testów

Istnieją trzy rodzaje testu t-Studenta (W. Malska 2015, s. 326):

  • dla prób niezależnych – ocenia różnice między niezależnymi grupami np. między grupą kontrolną a eksperymentalną, kobietami a mężczyznami czy grupą starszych i młodszych. Aby wyniki wyszły prawidłowe należy mieć na uwadze takie czynniki jak: pomiar ilościowy zmiennej zależnej, zmienna niezależna powinna być dychotomiczna, rozkład w grupach powinien być normalny, wariancje oraz liczebność grup jest zbliżona. Porównanie grupy badanych następuje z wykorzystaniem testu zgodności chi-kwadrat (test Pearsona). Wzór dla prób niezależnych wygląda następująco (W. Malska 2015, s. 326):

  • dla prób zależnych – Jest to klasyczny przykład testu wykonywanego przed i po zaistniałej zmianie. W odróżnieniu od testu dla prób niezależnych, bierze pod uwagę i ocenia te same grupy osób. Obserwacja musi odbyć się dwa razy, a badane próby są powiązane ze sobą. Próba ta zestawia ze sobą wynik i pierwszego i drugiego pomiaru dokonywanego na jednej zmiennej. Zmienna jest badana w odniesieniu do innych warunków, jakie zachodzą, jednakże z uwzględnieniem tej samej grupy badanych. Próba zależna wymaga zaistnienia określonych czynników: zmiennej zależnej w pomiarze ilościowym; rozkładu zmiennej, który jest normalny; zastosowania identycznej skali pomiaru przy obydwu pomiarach, normalność rozkładu różnic zmiennych (W. Malska 2015, s. 326):
  • dla jednej próby – test ten pozwala wyciągnąć wnioski z zestawienia: średniego wyniki dokonanego na jednej grupie osób poddanych w badaniu, z odchyleniem standardowym wynikającym z tego samego badania na tej samej, jednej grupie badanych. Obydwa te pomiary koreluje się z założoną na potrzeby tego badania wartością. Wartość ta może być przyjęta hipotetycznie lub można wynika z innych badań. Test jednej próby używany jest, kiedy dokonywany jest pomiar zmiennej o ile znajduje się ona na skali ilościowej i ma rozkład normalny (W. Malska 2015, s. 326): Parser nie mógł rozpoznać (błąd składni): {\displaystyle T=\frac{\bar{X_1}-μ}{Sx_1}}

Rozkład t-Studenta

Rozkład t-Studenta zwany również rozkładem t to model teoretyczny wykorzystywany do przybliżenia momentu pierwszego rzędu populacji o rozkładzie normalnym, przy niewielkiej wielkości próby oraz nieznanym odchyleniem standardowym. Jest to rozkład prawdopodobieństwa, który podaje wartość małej próby z populacji, posiadającej rozkład normalny i dla której brak jest informacji o odchyleniu standardowym. W przeciwieństwie do rozkładu normalnego rozkład t zależy jedynie od stopni swobody (M. Sobczyk 2007, s. 134-136).

Rozkład t-Studenta jest stosowany w statystyce i metrologii. Opierają się na dwóch podstawowych twierdzeniach (M. Sobczyk 2007, s. 134-136):

  1. zmienne losowe Parser nie mógł rozpoznać (błąd składni): {\displaystyle X_1,X_2,…X_n} mają taki sam rozkład prawdopodobieństwa, który jest rozkładem normalnym o średniej i wariancji Parser nie mógł rozpoznać (błąd składni): {\displaystyle σ^2} . Wówczas zmienna ma rozkład Studenta o stopniach swobody.
  2. dwie próby o liczebności oraz , wartościach średnich oraz i wariancja określona z próby oraz wylosowane z populacji o jednakowym rozkładzie normalnym, powodują, że zmienna ma rozkład Studenta o

Rozkład ten jest wykorzystywany w testach parametrycznych, estymacji przedziałowej, wartości średnich i wariancji oraz testach istotności, gdy chodzi o próby z niewielką liczebnością, czyli gdy . W przypadku metrologii rozkładu Studenta używa się do estymacji odchylenia standardowego. Jeśli chodzi o duże próby, gdzie rozkład t-Studenta jest tożsamy z rozkładem normalnym, a dla mniejszych prób estymator odchylenia standardowego powinien zostać pomnożony przez wartość krytyczną rozkładu, gdzie liczba stopni swobody wynosi , a poziom istotności przyjmuje wartość Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wikimedia.org/api/rest_v1/”:): {\displaystyle α} . (M. Sobczyk 2007, s. 134-136).

Przykłady zastosowania testu t-Studenta

Test t-Studenta można wykorzystać w badaniu różnych zjawisk w zależności od posiadanych danych. Poniżej zostały przedstawione przykłady problemów badawczych w odniesieniu do rodzajów testów t-Studenta (R. Magiera 2018, s. 226):

  1. dla jednej próby

Czy wpływy ze sztabów WOŚP w woj. Lubelskim różnią się od średniej z ubiegłego roku?

Czy inteligencja studentów z UEK różni się od średniej w populacji?

  1. dla prób skorelowanych (zależnych)

Czy słuchanie muzyki podczas rozwiązywania zadań wydłuża czas znalezienia rozwiązania?

Czy istnieje różnica między wysokością zarobków na początku zatrudnienia a wysokością zarobków po 5 latach pracy?

  1. dla prób nieskorelowanych (niezależnych)

Czy kobiety i mężczyźni różnią się liczbą podejść do egzaminy na prawo jazdy?

Czy mieszkańcy miast i wsi różnią się od siebie wysokością zarobków?

Bibliografia

Autor: Anna Tas