Współczynnik asymetrii: Różnice pomiędzy wersjami
Nie podano opisu zmian |
Nie podano opisu zmian |
||
Linia 22: | Linia 22: | ||
==Podział miar asymetrii == | ==Podział miar asymetrii == | ||
Dla miar asymetrii wyróżnia się następujące miary <ref> D. Tarka, A. Olszewska 2018 s. 156 - 163 </ref>: | Dla miar asymetrii wyróżnia się następujące miary <ref> D. Tarka, A. Olszewska 2018 s. 156 - 163 </ref>: | ||
* bezwzględne - określające '''kierunek''' asymetrii | * bezwzględne - określające '''kierunek''' asymetrii. | ||
# wskaźnik asymetrii (wskaźnik skośności) - w odróżnieniu od współczynnika asymetrii (współczynnika skośności) bada jedynie wartość różnicy między średnią arytmetyczną a modalną i może być wyrażony wzorem: <math>{\bar{x}-M_o}</math> lub wzorem: <math> (Q_3-Q-2)-(Q_2-Q_1)=Q_3+Q_1-2M_e </math> Dla wskaźnika asymetrii, analogicznie jak dla współczynnika asymetrii, można wyróżnić trzy rodzaje rozkładu: symetryczny (dla <math>\bar{x}=M_e=M_o </math>), asymetryczny lewostronnie (dla <math>\bar{x}<M_e<M_o </math>) oraz asymetryczny prawostronnie (dla <math>\bar{x}>M_e>M_o </math>), jednak nie może wyznaczyć on siły asymetrii, ponieważ cechy wyrażone są w jednostkach bezwzględnych | # wskaźnik asymetrii (wskaźnik skośności) - w odróżnieniu od współczynnika asymetrii (współczynnika skośności) bada jedynie wartość różnicy między średnią arytmetyczną a modalną i może być wyrażony wzorem: <math>{\bar{x}-M_o}</math> lub wzorem: <math> (Q_3-Q-2)-(Q_2-Q_1)=Q_3+Q_1-2M_e </math> Dla wskaźnika asymetrii, analogicznie jak dla współczynnika asymetrii, można wyróżnić trzy rodzaje rozkładu: symetryczny (dla <math>\bar{x}=M_e=M_o </math>), asymetryczny lewostronnie (dla <math>\bar{x}<M_e<M_o </math>) oraz asymetryczny prawostronnie (dla <math>\bar{x}>M_e>M_o </math>), jednak nie może wyznaczyć on siły asymetrii, ponieważ cechy wyrażone są w jednostkach bezwzględnych, | ||
# kwartylowy wskaźnik asymetrii | # kwartylowy wskaźnik asymetrii, | ||
# trzeci moment centralny (moment centralny trzeciego rzędu) - wynik uzyskiwany przy wykorzystaniu szeregu prostego (wyliczającego), punktowego (jednostopniowego) lub szeregu przedziałowego w zależności od rodzaju dostępnych danych. Informuje o kierunku asymetrii i pozwala wykorzystać zarówno dane niezgrupowane, jak i dane zgrupowane. | # trzeci moment centralny (moment centralny trzeciego rzędu) - wynik uzyskiwany przy wykorzystaniu szeregu prostego (wyliczającego), punktowego (jednostopniowego) lub szeregu przedziałowego w zależności od rodzaju dostępnych danych. Informuje o kierunku asymetrii i pozwala wykorzystać zarówno dane niezgrupowane, jak i dane zgrupowane. | ||
* względne - określające '''kierunek''' oraz '''siłę''' asymetrii. Wielkość współczynników determinuje siłę asymetrii. | * względne - określające '''kierunek''' oraz '''siłę''' asymetrii. Wielkość współczynników determinuje siłę asymetrii. | ||
# klasyczno-pozycyjny współczynnik skośności (asymetrii) | # klasyczno-pozycyjny współczynnik skośności (asymetrii), | ||
# kwartylowy współczynnik skośności (asymetrii) | # kwartylowy współczynnik skośności (asymetrii), | ||
# absolutna miara asymetrii standaryzowany (trzeci moment centralny standaryzowany) - wynik miary może być uzyskany za pomocą obliczenia szeregu szczegółowego, rozdzielczego punktowego (jednostajnego) lub szeregu rozdzielczego przedziałowego. | # absolutna miara asymetrii standaryzowany (trzeci moment centralny standaryzowany) - wynik miary może być uzyskany za pomocą obliczenia szeregu szczegółowego, rozdzielczego punktowego (jednostajnego) lub szeregu rozdzielczego przedziałowego. | ||
Wersja z 23:12, 24 kwi 2022
Współczynnik asymetrii (współczynnik skośności) - jedna z miar asymetrii określająca kierunek i siłę asymetrii rozkładu wyrażona w postaci wzoru: gdzie to średnia arytmetyczna dla grupy, to moda (dominanta), s to odchylenie standardowe [1]. Współczynnik skośności jest narzędziem często wykorzystywanym w analizie statystycznej pozwalającym na interpretację rozkładu danych i informującym o równomierności rozłożenia cech w badanym zbiorze [2].
Istnieje też możliwość wyznaczenia współczynnika asymetrii wykorzystując kwartyle () oraz odchylenie ćwiartkowe (). Wykorzystywany jest wtedy następujący wzór: a do prezentacji wartości kwantyli używany jest wykres pudełkowy.
Kierunki asymetrii
W zależności od wartości współczynnika asymetrii, występującego jako miara pozycyjna, wyróżnia się następujące kierunki asymetrii [3]:
- rozkład asymetryczny lewostronnie (skośność lewostronna, asymetria ujemna) wstępuje, gdy a lewy ogon rozkładu jest dłuższy niż prawy. W rozkładzie większą część stanowią jednostki o wartości cechy poniżej wyznaczonej średniej. Dla rozkładu o asymetrii lewostronnej średnia arytmetyczna ma niższą wartość niż mediana, której wartość jest niższa niż wartość mody:
- rozkład asymetryczny prawostronnie (skośność prawostronna, asymetria dodatnia) występuje, gdy a prawy ogon rozkładu jest dłuższy niż lewy. W rozkładzie większą część stanowią jednostki o wartości cechy poniżej wyznaczonej średniej. Dla rozkładu o asymetrii prawostronnej średnia arytmetyczna ma wyższą wartość niż mediana, której wartość jest wyższa niż wartość mody:
- rozkład symetryczny - występuje dla rozkładu, w którym wartość średniej arytmetycznej, mediany i mody są sobie równe:
Klasyfikacja siły asymetrii
Współczynnik asymetrii stosowany w porównaniach wskazuje kierunek asymetrii. Im większa wartość, tym silniejsza asymetria. Asymetrie rozkładu klasyfikuje się najczęściej do jednej z poniższych reguł [4]:
- rozkład symetryczny - dla ; liczebności rozmieszczone są jednakowo dla wartości cech w tej samej odległości od środka asymetrii (średniej arytmetycznej),
- słaba asymetria - dla ,
- umiarkowana asymetria - dla ,
- silna asymetria - dla .
Podział miar asymetrii
Dla miar asymetrii wyróżnia się następujące miary [5]:
- bezwzględne - określające kierunek asymetrii.
- wskaźnik asymetrii (wskaźnik skośności) - w odróżnieniu od współczynnika asymetrii (współczynnika skośności) bada jedynie wartość różnicy między średnią arytmetyczną a modalną i może być wyrażony wzorem: lub wzorem: Dla wskaźnika asymetrii, analogicznie jak dla współczynnika asymetrii, można wyróżnić trzy rodzaje rozkładu: symetryczny (dla ), asymetryczny lewostronnie (dla ) oraz asymetryczny prawostronnie (dla ), jednak nie może wyznaczyć on siły asymetrii, ponieważ cechy wyrażone są w jednostkach bezwzględnych,
- kwartylowy wskaźnik asymetrii,
- trzeci moment centralny (moment centralny trzeciego rzędu) - wynik uzyskiwany przy wykorzystaniu szeregu prostego (wyliczającego), punktowego (jednostopniowego) lub szeregu przedziałowego w zależności od rodzaju dostępnych danych. Informuje o kierunku asymetrii i pozwala wykorzystać zarówno dane niezgrupowane, jak i dane zgrupowane.
- względne - określające kierunek oraz siłę asymetrii. Wielkość współczynników determinuje siłę asymetrii.
- klasyczno-pozycyjny współczynnik skośności (asymetrii),
- kwartylowy współczynnik skośności (asymetrii),
- absolutna miara asymetrii standaryzowany (trzeci moment centralny standaryzowany) - wynik miary może być uzyskany za pomocą obliczenia szeregu szczegółowego, rozdzielczego punktowego (jednostajnego) lub szeregu rozdzielczego przedziałowego.
Przypisy
Bibliografia
- Bednarz-Okrzyńska K., (2016), Analiza zależności między wartością współczynnika asymetrii a wartością semiodchylenia standardowego stóp zwrotu wybranych indeksów giełdowych i spółek, Studia i Prace Wydziału Nauk Ekonomicznych i Zarządzania Uniwersytetu Szczecińskiego, nr 45, s. 181
- Homa M., Mościbrodzka M. (2018), Wykorzystanie narzędzi wielowymiarowej analizy porównawczej w badaniu jednorodności funduszy inwestycyjnych akcji pod względem ryzyka i efektywności - podejście klasyczne i alternatywne, E-Wydawnictwo. Prawnicza i Ekonomiczna Biblioteka Cyfrowa. Wydział Prawa, Administracji i Ekonomii Uniwersytetu Wrocławskiego, Wrocław, s. 62
- Major M., Niezgoda J., (2003), Statystyki, Część I. Statystyka opisowa, Krakowskie Towarzystwo Edukacyjne, Kraków, s. 62-63
- Tarka D., Olszewska A., (2018),Elementy Statystyki, Opis statystyczny, Oficyna Wydawnicza Politechniki Białostockiej, Białystok, s. s. 156 - 163
- Wesołowska-Janczarek M., Kornacki A., (2016), O różnych znakach współczynników asymetrii w rozkładach empirycznych, Economic and Regional Studies, nr 9, s. 64
Autor: Mariola Karasińska