Rozkład dwumianowy: Różnice pomiędzy wersjami
Nie podano opisu zmian |
Nie podano opisu zmian |
||
Linia 1: | Linia 1: | ||
'''Rozkład dwumianowy''' – rozkład prawdopodobieństwa sformułowany przez szwajcarskiego matematyka Johanna’a Bernulliego (1654-1705). Zmianna losowa ma rozkład dwumianowy, gdy zostaną spełnione następujące warunki: | |||
Rozkład dwumianowy – rozkład prawdopodobieństwa sformułowany przez szwajcarskiego matematyka Johanna’a Bernulliego (1654-1705). Zmianna losowa ma rozkład dwumianowy, gdy zostaną spełnione następujące warunki: | |||
*Liczba prób jest ustalona – we wzorach najczęściej określana jako „n”. | *Liczba prób jest ustalona – we wzorach najczęściej określana jako „n”. | ||
*Wynikiem każdej próby mogą być jedynie stany: sukces i porażka. | *Wynikiem każdej próby mogą być jedynie stany: sukces i porażka. | ||
*Każda z prób jest niezależna, oznacza to, że wynik poszczególnej próby nie ma wpływu na wyniki pozostałych prób. | *Każda z prób jest niezależna, oznacza to, że wynik poszczególnej próby nie ma wpływu na wyniki pozostałych prób. | ||
*Prawdopodobieństwo sukcesu i porażki jest stałe dla wszystkich prób. | *Prawdopodobieństwo sukcesu i porażki jest stałe dla wszystkich prób. | ||
Definicja rozkładu dwumianowego bazuje na eksperymencie wykonywanym według tak zwanego schematu Bernoulliego. Eksperyment ten przebiega w następujący sposób: | Definicja rozkładu dwumianowego bazuje na eksperymencie wykonywanym według tak zwanego schematu Bernoulliego. Eksperyment ten przebiega w następujący sposób: | ||
:Należy przeprowadzić doświadczenie, którego wynikiem może być jedno z następujących zdarzeń, zdarzenie ''A'' z prawdopodobieństwem ''p'' lub zdarzenie przeciwne ''B'', którego prawdopodobieństwo wystąpienia wynosi ''q = 1-p''. Jedno ze zdarzeń określane jest jako „sukces” a drugie jako „porażka”. Doświadczenie to należy powtórzyć n-krotnie. Każde z doświadczeń musi być niezależne, czyli prawdopodobieństwo sukcesu pozostaje niezmienne. Liczba doświadczeń które zakończyły sukcesami można wyrazić zmienną losową ''X'' należącą do zbioru liczb całkowitych nieujemnych z granicą równą n (liczba prób). | :Należy przeprowadzić doświadczenie, którego wynikiem może być jedno z następujących zdarzeń, zdarzenie ''A'' z prawdopodobieństwem ''p'' lub zdarzenie przeciwne ''B'', którego prawdopodobieństwo wystąpienia wynosi ''q = 1-p''. Jedno ze zdarzeń określane jest jako „sukces” a drugie jako „porażka”. Doświadczenie to należy powtórzyć n-krotnie. Każde z doświadczeń musi być niezależne, czyli prawdopodobieństwo sukcesu pozostaje niezmienne. Liczba doświadczeń które zakończyły sukcesami można wyrazić zmienną losową ''X'' należącą do zbioru liczb całkowitych nieujemnych z granicą równą n (liczba prób). | ||
Przykład eksperymentu przeprowadzonego według schematu Bernulliego: | Przykład eksperymentu przeprowadzonego według schematu Bernulliego: | ||
Linia 16: | Linia 12: | ||
==Funkcja prawdopodobieństwa zmiennej dwumianowej== | ==Funkcja prawdopodobieństwa zmiennej dwumianowej== | ||
Zdarzenie ''X = k'' ma miejsce, gdy po przeprowadzonych n niezależnych prób, zaobserwujemy dowolny ciąg zdarzeń, w którym sukces wystąpił ''k'' razy a porażka ''n-k'' razy. Prawdopodobieństwo otrzymania takiego ciągu jest dokładnie takie samo jak otrzymanie dowolnego innego ciągu zdarzeń i wynosi: | Zdarzenie ''X = k'' ma miejsce, gdy po przeprowadzonych n niezależnych prób, zaobserwujemy dowolny ciąg zdarzeń, w którym sukces wystąpił ''k'' razy a porażka ''n-k'' razy. Prawdopodobieństwo otrzymania takiego ciągu jest dokładnie takie samo jak otrzymanie dowolnego innego ciągu zdarzeń i wynosi: | ||
<math> p^{k}(1-p)^{n-k} </math> | :<math> p^{k}(1-p)^{n-k} </math> | ||
Aby obliczyć liczbę możliwych n-elementowych ciągów zdarzeń, w których zdarzenie nazywane sukcesem wystąpi dokładnie ''k'' razy, należy obliczyć kombinację z ''n'' elementów po ''k''. Zatem prawdopodobieństwo wystąpienia zdarzenia ''X = k'' będzie sumą prawdopodobieńswt wystąpienia poszczególnych kombinacji: | Aby obliczyć liczbę możliwych n-elementowych ciągów zdarzeń, w których zdarzenie nazywane sukcesem wystąpi dokładnie ''k'' razy, należy obliczyć kombinację z ''n'' elementów po ''k''. Zatem prawdopodobieństwo wystąpienia zdarzenia ''X = k'' będzie sumą prawdopodobieńswt wystąpienia poszczególnych kombinacji: | ||
<math> P\left ( X=k \right )= \binom{n}{k}p^{k}\left ( 1-p \right )^{n-k}</math> | :<math> P\left ( X=k \right )= \binom{n}{k}p^{k}\left ( 1-p \right )^{n-k}</math> | ||
Wzór prawdziwy dla ''k = 0, 1, 2, …, n''. | Wzór prawdziwy dla ''k = 0, 1, 2, …, n''. | ||
(J. Jóźwiak, J. Podgórski 2012, s. 128-129) | (J. Jóźwiak, J. Podgórski 2012, s. 128-129) | ||
Linia 25: | Linia 22: | ||
==Charakterystyki rozkładu dwumianowego == | ==Charakterystyki rozkładu dwumianowego == | ||
Aby wyznaczyć wartość oczekiwną oraz wariancję zmiennej, która podlega rozkładowi dwumianowemu należy wykorzystać fakt, że zmienna losowa X ~ B(n,p) może zostać przedstawiona jako suma n niezależnych zmiennych losowych podlegających rozkładowu zero-jedynkowemy z paremetrem p: | Aby wyznaczyć wartość oczekiwną oraz wariancję zmiennej, która podlega rozkładowi dwumianowemu należy wykorzystać fakt, że zmienna losowa ''X ~ B(n,p)'' może zostać przedstawiona jako suma ''n'' niezależnych zmiennych losowych podlegających rozkładowu zero-jedynkowemy z paremetrem ''p'': | ||
<math> X := \sum_{i=1}^{n}X_{i} </math> | :<math> X := \sum_{i=1}^{n}X_{i} </math> gdzie ''X ~ rozkład zero-jedynkowy z parametrem p,(i = 1,...,n)''. | ||
Następnie wtkorzystującc własności wartości oczekiwanej oraz wariancji, można otrzymać następujące wzory: | Następnie wtkorzystującc własności wartości oczekiwanej oraz wariancji, można otrzymać następujące wzory: | ||
<math> E(X)=E\left ( \sum_{i=1}^{n} \right )= \sum_{i=1}^{n}(X_{i})-\sum_{i=1}^{n}p=np </math> | :<math> E(X)=E\left ( \sum_{i=1}^{n} \right )= \sum_{i=1}^{n}(X_{i})-\sum_{i=1}^{n}p=np </math> | ||
<math> D^2(X)=D^2\left ( \sum_{i=1}^{n}X_{i}\right )=\sum_{i=1}^{n}D^2(X_{i})=npq </math> | oraz | ||
:<math> D^2(X)=D^2\left ( \sum_{i=1}^{n}X_{i}\right )=\sum_{i=1}^{n}D^2(X_{i})=npq </math> | |||
Zatem charekterystyki rozkładu dwumianowego prezentują się następująco: | Zatem charekterystyki rozkładu dwumianowego prezentują się następująco: | ||
*wartośc oczekiwana: | |||
:<math> E(X)=np </math> | |||
*wariancja: | |||
:<math> D^2=npq </math> | |||
*odchylenie standardowe: | |||
:<math> D(X)=\sqrt{npq} </math> | |||
(S. Denkowska, M. Papież 2011, s. 43-44) | |||
==Rozkład prawdopodobieństwa częstości względnej pojawiania się sukcesu== | |||
Mając zmienną losową podlegającą rozkładowi dwumianowemu o parametrach ''n'' oraz ''p'', można zdefiniować częstość względną sukcesów jako zmienną losową: | Mając zmienną losową podlegającą rozkładowi dwumianowemu o parametrach ''n'' oraz ''p'', można zdefiniować częstość względną sukcesów jako zmienną losową: | ||
<math> W=\frac{X}{n}</math> | :<math> W=\frac{X}{n}</math> | ||
Zmienna ta może przyjmować wartości należące do zbioru: | Zmienna ta może przyjmować wartości należące do zbioru: | ||
<math> W =\left \{ 0,\frac{1}{n},\frac{2}{n},...,1 \right \} </math> | :<math> W =\left \{ 0,\frac{1}{n},\frac{2}{n},...,1 \right \} </math> | ||
Zachodzi zatem równość: | Zachodzi zatem równość: | ||
<math> P\left ( W=\frac{k}{n} \right )=P\left ( \frac{X}{n}=\frac{k}{n} \right )=P\left ( X=k \right ) </math> | :<math> P\left ( W=\frac{k}{n} \right )=P\left ( \frac{X}{n}=\frac{k}{n} \right )=P\left ( X=k \right ) </math> | ||
Gdzie: | Gdzie: | ||
<math> \left ( k=0,1,...,n \right ) </math> | :<math> \left ( k=0,1,...,n \right ) </math> | ||
Równość ta oznacza, że zmienna ''W'' podlega rozkładowy dwumianowemu oraz przymuje takie same wartości co zmienna losowa ''X''. | Równość ta oznacza, że zmienna ''W'' podlega rozkładowy dwumianowemu oraz przymuje takie same wartości co zmienna losowa ''X''. | ||
Wykorzystując własności wynikające z definicji wartości oczekiwane oraz definicji wariancji otrzymuje się: | Wykorzystując własności wynikające z definicji wartości oczekiwane oraz definicji wariancji otrzymuje się: | ||
<math> D^2\left ( W \right )=D^2\left ( \frac{X}{n} \right )=\frac{1}{n^2}D^2\left ( X \right )=\frac{1}{n^2}np\left ( 1-p \right )=\frac{p\left ( 1-p \right )}{n}</math> | :<math> D^2\left ( W \right )=D^2\left ( \frac{X}{n} \right )=\frac{1}{n^2}D^2\left ( X \right )=\frac{1}{n^2}np\left ( 1-p \right )=\frac{p\left ( 1-p \right )}{n}</math> | ||
oraz: | oraz | ||
<math> E\left ( W \right )=E\left ( \frac{X}{n} \right )=\frac{1}{n}E\left ( X \right )=\frac{1}{n}np=p </math> | :<math> E\left ( W \right )=E\left ( \frac{X}{n} \right )=\frac{1}{n}E\left ( X \right )=\frac{1}{n}np=p </math> | ||
Z ostatniego wzoru wynika, iż w n doświadczeniach przeprowadzonych wedłóg schematu Bernulliego, wartość oczekiwna częstości sukcesów jest taka sama co prowdopodobieństwo wystąpienia sukcesu w pojedynczym doświadczniu. (J. Jóźwiak, J. Podgórski 2012, s. 132-133) | Z ostatniego wzoru wynika, iż w n doświadczeniach przeprowadzonych wedłóg schematu Bernulliego, wartość oczekiwna częstości sukcesów jest taka sama co prowdopodobieństwo wystąpienia sukcesu w pojedynczym doświadczniu. (J. Jóźwiak, J. Podgórski 2012, s. 132-133) | ||
==Bibliografia== | ==Bibliografia== | ||
*Jóżwiak J., Podgórski J. (2012), Statystyka od podstaw, Polskie Wydawnictwo Ekonomiczne, Warszawa, s. 128-133 | *Jóżwiak J., Podgórski J. (2012), Statystyka od podstaw, Polskie Wydawnictwo Ekonomiczne, Warszawa, s. 128-133 |
Wersja z 14:35, 17 kwi 2022
Rozkład dwumianowy – rozkład prawdopodobieństwa sformułowany przez szwajcarskiego matematyka Johanna’a Bernulliego (1654-1705). Zmianna losowa ma rozkład dwumianowy, gdy zostaną spełnione następujące warunki:
- Liczba prób jest ustalona – we wzorach najczęściej określana jako „n”.
- Wynikiem każdej próby mogą być jedynie stany: sukces i porażka.
- Każda z prób jest niezależna, oznacza to, że wynik poszczególnej próby nie ma wpływu na wyniki pozostałych prób.
- Prawdopodobieństwo sukcesu i porażki jest stałe dla wszystkich prób.
Definicja rozkładu dwumianowego bazuje na eksperymencie wykonywanym według tak zwanego schematu Bernoulliego. Eksperyment ten przebiega w następujący sposób:
- Należy przeprowadzić doświadczenie, którego wynikiem może być jedno z następujących zdarzeń, zdarzenie A z prawdopodobieństwem p lub zdarzenie przeciwne B, którego prawdopodobieństwo wystąpienia wynosi q = 1-p. Jedno ze zdarzeń określane jest jako „sukces” a drugie jako „porażka”. Doświadczenie to należy powtórzyć n-krotnie. Każde z doświadczeń musi być niezależne, czyli prawdopodobieństwo sukcesu pozostaje niezmienne. Liczba doświadczeń które zakończyły sukcesami można wyrazić zmienną losową X należącą do zbioru liczb całkowitych nieujemnych z granicą równą n (liczba prób).
Przykład eksperymentu przeprowadzonego według schematu Bernulliego: Wykonujemy 10 niezależnych doświadczeń polegających na rzucie monetą. W każdym rzucie prawdopodobieństwo że wypadnie reszka wynosi 50% czyli p =0,5. Można przyjąć, że doświadczenie którego wynikiem jest reszka będzie sukcesem a jeżeli wypadnie orzeł to wynikiem będzie porażka. Reszka może wypaść k = 0, 1, 2, …, 10 razy.
Funkcja prawdopodobieństwa zmiennej dwumianowej
Zdarzenie X = k ma miejsce, gdy po przeprowadzonych n niezależnych prób, zaobserwujemy dowolny ciąg zdarzeń, w którym sukces wystąpił k razy a porażka n-k razy. Prawdopodobieństwo otrzymania takiego ciągu jest dokładnie takie samo jak otrzymanie dowolnego innego ciągu zdarzeń i wynosi:
Aby obliczyć liczbę możliwych n-elementowych ciągów zdarzeń, w których zdarzenie nazywane sukcesem wystąpi dokładnie k razy, należy obliczyć kombinację z n elementów po k. Zatem prawdopodobieństwo wystąpienia zdarzenia X = k będzie sumą prawdopodobieńswt wystąpienia poszczególnych kombinacji:
Wzór prawdziwy dla k = 0, 1, 2, …, n. (J. Jóźwiak, J. Podgórski 2012, s. 128-129)
Charakterystyki rozkładu dwumianowego
Aby wyznaczyć wartość oczekiwną oraz wariancję zmiennej, która podlega rozkładowi dwumianowemu należy wykorzystać fakt, że zmienna losowa X ~ B(n,p) może zostać przedstawiona jako suma n niezależnych zmiennych losowych podlegających rozkładowu zero-jedynkowemy z paremetrem p:
- gdzie X ~ rozkład zero-jedynkowy z parametrem p,(i = 1,...,n).
Następnie wtkorzystującc własności wartości oczekiwanej oraz wariancji, można otrzymać następujące wzory:
oraz
Zatem charekterystyki rozkładu dwumianowego prezentują się następująco:
- wartośc oczekiwana:
- wariancja:
- odchylenie standardowe:
(S. Denkowska, M. Papież 2011, s. 43-44)
Rozkład prawdopodobieństwa częstości względnej pojawiania się sukcesu
Mając zmienną losową podlegającą rozkładowi dwumianowemu o parametrach n oraz p, można zdefiniować częstość względną sukcesów jako zmienną losową:
Zmienna ta może przyjmować wartości należące do zbioru:
Zachodzi zatem równość:
Gdzie:
Równość ta oznacza, że zmienna W podlega rozkładowy dwumianowemu oraz przymuje takie same wartości co zmienna losowa X. Wykorzystując własności wynikające z definicji wartości oczekiwane oraz definicji wariancji otrzymuje się:
oraz
Z ostatniego wzoru wynika, iż w n doświadczeniach przeprowadzonych wedłóg schematu Bernulliego, wartość oczekiwna częstości sukcesów jest taka sama co prowdopodobieństwo wystąpienia sukcesu w pojedynczym doświadczniu. (J. Jóźwiak, J. Podgórski 2012, s. 132-133)
Bibliografia
- Jóżwiak J., Podgórski J. (2012), Statystyka od podstaw, Polskie Wydawnictwo Ekonomiczne, Warszawa, s. 128-133
- Denkowska S., Papież M. (2011), Rachunak prawdopodobieństwa dla studentów studiów ekonomicznych, Wydawnictwo C.H. BECK, Warszawa s. 43-44
- Woźniak M. (2002), Statystyka ogólna, Wydawnictwo AE, Kraków
Autor: Mateusz Kaczor